• Title/Summary/Keyword: aggregate properties

Search Result 1,500, Processing Time 0.027 seconds

Carbonation Properties of Recycled Aggregate Concrete by Specified Concrete Strength (설계기준 강도별 순환골재 콘크리트의 탄산화 특성)

  • Lee, Jun;Lee, Bong-Chun;Cho, Young-Keun;Park, Kwang-Min;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.85-93
    • /
    • 2017
  • This paper presents mechanical properties and carbonation behavior of the recycled aggregate concretes(RAC) in which natural aggregate was replaced by recycled coarse aggregate and fine aggregate by specified concrete strength levels(21, 35, 50MPa). A total of 18 RAC were produced and classified into six series, each of which included three mixes designed with three specified concrete strength levels of 21MPa, 35MPa and 50MPa and three recycled aggregate replacement ratios of 0, 50 and 100%. Physical and mechanical properties of RAC were tested for slump test, compressive strength, and carbonation depth. The test results indicated that the slump of RAC could be improved or same by recycled coarse aggregate replacement ratios, when compared with natural aggregate. But slump of RAC was decreased as the recycled fine aggregate replacement ratios increase. Also, the test results showed that the compressive strength was decreased as the recycled aggregate replacement ratios increased and it had a conspicuous tendency to decrease when the content of the recycled aggregate exceeded 50%. Furthermore, the result indicated that the measured carbonation depth increases by 40% with the increase of the recycled aggregate replacement. In the case of the concrete having low level compressive strength, the increase of carbonation depth tends to be higher when using the RCA. However, the trend of carbonation resistivity in high level compressive strength concrete is similar to that obtained in natural aggregate concrete. Therefore, an advance on the admixture application and mix ratio control are required to improve the carbonation resistivity when using the recycled aggregate in large scale.

The Effect of Combinations of Electric Arc Furnace Slag and Lime Stone aggregates on Engineering Properties of Ultra High Strength Concrete with 80MPa (전기로 산화슬래그 잔골재와 석회암 골재의 조합사용이 80MPa급 초고강도 콘크리트의 공학적 특성에 미치는 영향)

  • Han, Min-Cheol;Moon, Byeong-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.253-260
    • /
    • 2017
  • The aim of research is to investigate various physical properties of ultra high strength concrete of 80MPa class using a combination of limestone aggregate and electronic arc furnace oxidizing slag aggregate. For aggregate combinations, granite and limestone are used for coarse aggregate, granite and limestone are also used for fine aggregate. And also, limestone fine aggregate is replaced by electronic arc furnace oxidizing slag aggregate of 25% and 50%. Test results indicated that flowability and compressive strength increased when limestone fine aggregate was used compared to that using granite fine aggregate due to higher modulus of elasticity by limestone. Also substitution of electronic arc furnace oxidizing slag aggregate resulted in a decrease of compressive strength slightly. It is found that the use of electronic arc furnace oxidizing slag aggregate and limestone aggregate would be favorable for reducing the autogenous shrinkage by as much as 9~25%.

The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate (인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구)

  • Choi, Se-Jin;Kim, Do-Bin;Lee, Kyung-Su;Kim, Young-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • This study is to compare and analyze the physical and strength properties of lightweight concrete using domestic lightweight aggregate by replacement ratio of artificial lightweight fine and coarse aggregate after considering low cement mixture and pre-wetting time. The slump, unit weight, compressive strength and split tensile strength of lightweight concrete with domestic lightweight aggregate were measured. As test results, the slump of lightweight concrete by replacement ratio of lightweight fine aggregate increased as the replacement ratio of lightweight fine aggregate increased. The unit weight of lightweight concrete using 100% of lightweight fine aggregate was about 10.4% lower than that of the lightweight concrete with natural sand. In addition, the unit weight of lightweight concrete by replacement ratio of lightweight coarse aggregate increased with the increase of the ratio of LWG10(5~10mm). The compressive strength of lightweight concrete with lightweight fine and coarse aggregate increased as the replacement ratio of lightweight fine aggregate increased. The compressive strength of lightweight concrete with natural sand and LWG10 was 30 to 31MPa regardless of the replacement ratio of the lightweight coarse aggregate after 7 days.

Monitoring on Carbonation of Concrete Building with 100% Recycled Aggregate (순환골재를 100% 사용한 구조물의 탄산화 진행 모니터링)

  • Shin, Sung-Gyo;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Bo-Kyeong;Han, Sang-Hyu;Hwang, Eui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.124-125
    • /
    • 2015
  • Recycled aggregate is not used for structures because of negative awareness of quality. for improving the negative awareness, a concrete structure was built with 100% recycled aggregate and monitoring mechanical properties and durability was conducted. As a result, It was observed that mechanical properties and carbonation of structures with 100% recycled aggregate were fine.

  • PDF

Physical Suitability Evaluation of Silicon manganese slag as Aggregate for Concrete (콘크리트용 골재로서 실리콘 망간슬래그의 물리적 적합성 평가)

  • Jung, Ui-In;Kim, Bong-Joo;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.41-42
    • /
    • 2015
  • The concrete aggregate generates carbon dioxide in production but its demanding is gradually increased in accordance with the depletion of natural resources. Therefore we evaluated compatibility and basic physical properties of Silicon manganese slag generated in iron production as an applicable concrete aggregate. In our test, the silicon maganese slag shows 2.8g/㎥ of density in 10mm of maximum particle size similar to a natural aggregate, and its absorption rate was 0.3% similar to the electric furnace slag. Unit volume weight and ratio of absolute volume was respectively 2,001㎏/㎥ and 51%. Strength properties of Silicon manganese slag will be evaluated with further studies and experiments.

  • PDF

The Influence of That Changes in Aggregate Material and Unit Binder Weight Have on the Material Properties of Regular Strength Concrete (골재원 및 단위결합재량 변화가 일반강도 콘크리트의 물성에 미치는 영향)

  • Park, Yong-Jun;Kim, Sang-Sub;Lee, Myeong-HO;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.17-18
    • /
    • 2015
  • In the case of concrete recently manufactured with a concrete mixing truck, although aggregate and cement are used as the main ingredients, from a costs savings perspective, low quality aggregates are processed and used as concrete aggregate. In the case of these low quality aggregates, the unit volume and unit binder weights are increased for manufacturing, and due to this problems such as dry shrinking of the architecture and economic infeasibility have arisen. Therefore by changing the aggregate material and the unit binder weights that are currently being distributed, this research analyzes the influence on concrete.

  • PDF

A Study on Basic Properties of Grouting Motars for polymer-Modified preplaced Aggregate Concrete (프리팩트 폴리머 시멘트 콘크리트용 주입 폴리머 시멘트 모르터의 성질에 관한 연구)

  • 이철웅;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.350-355
    • /
    • 1998
  • Preplaced aggregate concrete in the building fields has recently been used in the partial repair works for damaged reinforced concrete structures, and polymer-modified mortars have been employed as grouting mortars for the preplaced aggregate concrete. The objective of this study is to clear the properties of polymer-modified grouting mortars. Polymer-modified mortars using a polystyrene acrylic(St/Ac) emulsion as grouting mortars for preplaced aggregate concrete are prepared with various mix proportions, and tested for flexural and compressive strengths, adhesion in tension. The flexural strength of emulsion-modified grouting mortars does not give much variation with increasing fly ash replacement for cement and sand-binder ratio. With increasing polymer-binder ratio, the flexural strength and adhesion in tension of St/Ac emulsion-modified grouting mortars increases, become nearly constant or reaches a maximum at a polymer-binder ratio of 5%. From the test results, St/Ac emulsion-modified grouting mortar with a polymer-binder ratio of 5%, a fly ash replacement of 10% for cement and sand-binder ratio of 1.0 is recommended as a grouting mortar for preplaced aggregate concrete.

  • PDF

An Experimental Study on the Workability and Engineering Properties of Recycled Aggregate Concrete Mixed Fly ash. - Part 1. In the case of fresh concrete - (플라이애쉬를 혼입한 재생골재의 시공성 및 공학적 특성에 관한 실험적 연구 -제 1보 아직 굳지않은 콘크리트의 성상을 중심으로-)

  • 남상일;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.254-259
    • /
    • 1994
  • Recycling of waste concrete will contribute not only to the solution of a growing waste disposal problem, also help to conserve natural resources of aggregate and to secure future supply of reasonably priced aggregates for building construction purpose within large urban areas. But there recycled aggregates are more porous and less resistant to mechanical actions. In comparison with natural aggrete concrete, recycled aggregate concrete shows reductions in strength and other engineering properties. And it may also be less durable due to increase in porosity and permeability. Economical ways of improving the quality of recycled aggregate concrete are: (1)by reducing the water-cement ratio; (2)by reducing the water content using a superplasticizer without affecting the workability; (3)addition of pozzolan, such as fly ash; and (4)blending of recycled aggregate with the natural aggretes.

  • PDF

Properties of the Expansion in Concrete with Electric Arc Furnace Slag Aggregate after Aging (에이징 처리 전기로슬래그골재를 활용한 콘크리트의 팽창특성)

  • 문한영;유정훈;백우열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.613-618
    • /
    • 2002
  • Steel slag produced in steel making process is divided with electric arc furnace slag and converter slag. Compared with the blast furnace slag, converter slag has the expansibility due to the reaction with water and free CaO. Therefore it is specified in Standard Specification for Concrete in Korea that steel slag aggregate must not be used in concrete. In this study, we treat electric arc furnace slag aggregate(EAFSA) for concrete before and after several aging process to reduce expansibility. The fundamental properties are measured, which are specific gravity, unit weight, abrasion value and immersion expansion ratio, as concrete aggregate. To understand the suitability of EAFSA for concrete, we made the concrete with EAFSA and then determined the strength and the volume change in EAFSA concrete. From the results EAFSA treated with steam aging process has potentiality for concrete aggregate.

  • PDF

A Study on the Qualities of Recycled Fine Aggregate and Properties of Recycled Concrete Producted by the Drying Manufacturing Method (건식제조법에 의해 생산된 고품질 재생잔골재의 품질 및 재생콘크리트의 성상에 관한 연구)

  • Jang Jong Ho;Lee Dong Heck;Moon Hyung Jae;Na Chul Sung;Joo Ji Hyun;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.364-367
    • /
    • 2004
  • The purpose of this study is to investigate quality of recycled fine aggregate manufactured by drying manufacturing system which is the manufacture method of high quality recycled fine aggregate, and to analyze on the fresh, hardened and durability properties of recycled concrete using it. Therefore it is to present the fundamental data for structural application of recycled concrete. The results of this study are as follows; Quality of recycled fine aggregate by drying manufacturing system is improved, and compressive and tensile strength of recycled concrete using high quality recycled fine aggregate are similar to those of normal concrete. But, durability such as carbonation, salt damage and dry shrinkage show decreased somewhat.

  • PDF