• Title/Summary/Keyword: aggregate

Search Result 4,264, Processing Time 0.029 seconds

Simulation of concrete shrinkage taking into account aggregate restraint

  • Tangtermsirikul, Somnuk;Nimityongskul, Pichai
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.105-113
    • /
    • 1997
  • This paper proposes a model for simulating concrete shrinkage taking into account aggregate restraint. In the model, concrete is regarded as a two-phase material based on shrinkage property. One is paste phase which undergoes shrinkage. Another is aggregate phase which is much more volumetrically stable. In the concrete, the aggregate phase is considered to restrain the paste shrinkage by particle interaction. Strain compatibility was derived under the assumption that there is no relative macroscopic displacement between both phases. Stresses on both phases were derived based on the shrinking stress of the paste phase and the resisting stress of the aggregate phase. Constitutive relation of paste phase was adopted from the study of Yomeyama, K. et al., and that of the aggregate phase was adopted from the author's particle contact density model. The equation for calculating concrete shrinkage considering aggregate restraint was derived from the equilibrium of the two phases. The concrete shrinkage was found to be affected by the free shrinkage of the paste phase, aggregate content and the stiffness of both phases. The model was then verified to be effective for simulating concrete shrinkage by comparing the predicted results with the autogeneous and drying shrinkage test results on mortar and concrete specimens.

Effect of the Combination of Coarse Aggregate and Fine Aggregate on the Flowability of Ultra High Strength Concrete (굵은 골재 및 잔골재 변화가 초고강도 콘크리트의 유동특성에 미치는 영향)

  • Lee, Hong-Kyu;Lee, Sun-Jae;Kim, Sang-Sup;Park, Young-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.71-72
    • /
    • 2015
  • As this study is the one related to the ultra high strength concrete essentially used for high rise buildings, it has analyzed on the flowability of ultra high strength concrete according to the variation of coarse aggregate and fine aggregate. The coarse aggregate was planned as two types including Granite Aggregate (GA) and crushed coarse Limestone Aggregate (LA) while fine aggregate was planned as four types including Sea Sand (SS), Limestone Crushed Fine Aggregates (LFA), Electric Arc Furnace Oxidizing Slag Aggregates (EFA) and Crushed Sand (CS) to perform experiment with a total of eight variables. As a result of analyzing slump flow, 500mm concentration time, U-Box and L-Flow, etc. among the characteristics of fresh concrete, a mix using LA+LFA is determined to show high flowability in case of applying ultra high strength concrete.

  • PDF

Bond behaviors of shape steel embedded in recycled aggregate concrete and recycled aggregate concrete filled in steel tubes

  • Chen, Zongping;Xu, Jinjun;Liang, Ying;Su, Yisheng
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.929-949
    • /
    • 2014
  • Thirty one push-out tests were carried out in order to investigate the bond behavior between shape steel, steel tube (named steels) and recycled aggregate concrete (RAC), including 11 steel reinforced recycled aggregate concrete (SRRAC) columns, 10 recycled aggregate concrete-filled circular steel tube (RACFCST) columns and 10 recycled aggregate concrete-filled square steel tube (RACFSST) columns. Eleven recycled coarse aggregate (RCA) replacement ratios (i.e., 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and 100%) were considered for SRRAC specimens, while five RCA replacement ratios (i.e., 0%, 25%, 50%, 75% and 100%), concrete type and length-diameter ratio for recycled aggregate concrete-filled steel tube (RACFST) specimens were designed in this paper. Based on the test results, the influences of all variable parameters on the bond strength between steels and RAC were investigated. It was found that the load-slip curves at the loading end appeared the initial slip earlier than the curves at the free end. In addition, eight practical bond strength models were applied to make checking computations for all the specimens. The theoretical analytical model for interfacial bond shear transmission length in each type of steel-RAC composite columns was established through the mechanical derivation, which can be used to design and evaluate the performance of anchorage zones in steel-RAC composite structures.

A Study on the Structural Characteristic of Recycled Aggregate Concrete Reinforced Steel Fiber (강섬유 혼입 순환골재 콘크리트의 구조적 특성에 관한 연구)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Park, Young-Bai;Kim, Jeong-Hoon;Cho, Chang-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.35-42
    • /
    • 2008
  • In this study, a sample was fabricated according to the recycled aggregate replacement level(0%, 30%, 60%), and the steel fiber mixing status in order to use recycled aggregate as a concrete alternative coarse aggregate, and then the materials and structural characteristics of recycled aggregate and steel fiber which impacted the reinforced concrete were analyzed. A conclusion was derived as follows. After considering the results of various material experiments and mock-up test, when a flexural strength and a ductility factor is increased and the replacement level is increased through mixing the steel fiber with the recycled aggregate concrete, the ductility and flexural strength reduction seems to be inhibited by adding the steel fiber. Also, it is indicated that the recycled aggregate has almost-similar compressive strength, tensile strength flexural strength and ductility capacity to the concrete which using the general gone even though the steel fiber is used and the replacement level is increased to 30%. Accordingly, the reinforced concrete frame using the steel fiber mixture and recycled aggregate seems to apply to the actual structure.

Behavior of reinforced sustainable concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Shallal, Mustafa S.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.271-284
    • /
    • 2021
  • This study aims to trace the response of twelve one-way sustainable concrete hollow-core slabs made by reducing cement content and using replacement of coarse aggregate by plastic aggregate. The trial mixes comprise the 25, 50, 75, and 100% replacement of natural coarse aggregate. The compressive strength of the resulting lightweight concrete with full replacement of coarse aggregate by plastic aggregate was 28 MPa. These slabs are considered to have a reduced dead weight due to using lightweight aggregate and due to reducing cross-section through using voids. The samples are tested under two verticals line loads. Several parameters are varied in this study such as; nature of coarse aggregate (natural or recycled), slab line load location, the shape of the core, core diameter, flexural reinforcement ratio, and thickness of the slab. Strain gauges are used in the present study to measure the strain of steel in each slab. The test samples were fourteen one-way reinforced concrete slabs. The slab's dimensions are (1000 mm), (600 mm), (200 mm), (length, width, and thickness). The change in the shape of the core from circular to square and the use of (100 mm) side length led to reducing the weight by about (46%). The cracking and ultimate strength is reduced by about (5%-6%) respectively. With similar values of deflection. The mode of failure will remain flexural. It is recognized that when the thickness of the slab changed from (200 mm to 175 mm) the result shows a reduction in cracking and ultimate strength by about (6% and 7%) respectively.

EIS Properties of Lightweght Aggregate According to Surface Coating (표면 코팅 유무에 따른 경량골재의 EIS 특징)

  • Pyeon, Myeong-Jang;Jeong, Su-Mi;Kim, Ju-Sung;Kim, Ho-Jin;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.107-108
    • /
    • 2022
  • In recent years, the construction industry has a tendency to increase of high-rise builidngs. High rise buildings can use limited space efficiently. But High rise buildings have problem that have extremely heavy weight. Various studies are being conducted to reduce the weight of buildings. Although lightweight aggregate is a meterial that can effectively reduce the weight of buildings, the strength of the aggregate itself is weak and the absorption rate is high, so the strength of the ITZ(Interfacial Transition Zone) area is weak. Therefore, it is essential to improve the interfacial area when using lightweight aggregates. In this study, an experiment was conducted to improve the adhesion between the aggregate and cement paste and to strengthen the interfacial area by coating the surface of the lighteight aggregate with Blast Furnace Slag. To confirm the improvement, compressive strength and EIS(Electrochemical Impedance Spectroscopy) measurements were perfromed. Using EIS, the change in electrical resistance of the cement hardened body was confirmed. As a result, it was confirmed that the lightweight aggregate coated on the surface showed highter compressive strength and electrical resistance than the non-coated lightweight aggregate, and that the coating material was filled in the interfacial area and inside the aggregate that helped to strengthen the compresssive strength and higher electrical resistance.

  • PDF

Optimum Abrasing Condition for Recycled Fine Aggregate Produced by Low Speed Wet Abraser Using Sulfur (황산수를 사용한 저속 습식 마쇄법에 의한 순환잔골재의 최적 마쇄조건)

  • Kim, Jin-Man;Kim, Ha-Seog;Park, Sun-Gyu;Kim, Bong-Ju;Kwak, Eun-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.557-563
    • /
    • 2008
  • Recently, the amount of disposed construction materials like demolished concrete is growing fast and the shortage of natural concrete aggregate is becoming serious. Therefore, recycling of aggregate extracted from the demolished concrete is getting important and use of the recycled aggregate for concrete has been seriously considered. However, the use of the recycled aggregate even for low performance concrete is very limited because recycled aggregate which contains large amount of old mortar has very low quality. Therefore, removing the paste sticked to the recycled aggregate is very important in the manufacturing of high quality recycled aggregate. We have studied a series of research according to complex crushing method, which is removed the ingredient of cement paste from recycled fine aggregate using both the low speed wet abrasion crusher as mechanical process and the acid treatment as chemical processes. This paper is to analyze the quality of the recycled fine aggregate produced by those complex method and investigate optimum manufacturing condition for recycled fine aggregate by the design of experiments. The experimental parameters considered are water ratio, coase aggregate ratio, and abrasion time. As a result, data concerning the properties of recycled sand were obtained. It was found that high quality recycled fine aggregate could be to obtain at the condition of the fifteen minute of abrasion-crusher time and the over 1.0 of recycled coarse aggregate ratio.

Carbonation Properties of Recycled Aggregate Concrete by Specified Concrete Strength (설계기준 강도별 순환골재 콘크리트의 탄산화 특성)

  • Lee, Jun;Lee, Bong-Chun;Cho, Young-Keun;Park, Kwang-Min;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.85-93
    • /
    • 2017
  • This paper presents mechanical properties and carbonation behavior of the recycled aggregate concretes(RAC) in which natural aggregate was replaced by recycled coarse aggregate and fine aggregate by specified concrete strength levels(21, 35, 50MPa). A total of 18 RAC were produced and classified into six series, each of which included three mixes designed with three specified concrete strength levels of 21MPa, 35MPa and 50MPa and three recycled aggregate replacement ratios of 0, 50 and 100%. Physical and mechanical properties of RAC were tested for slump test, compressive strength, and carbonation depth. The test results indicated that the slump of RAC could be improved or same by recycled coarse aggregate replacement ratios, when compared with natural aggregate. But slump of RAC was decreased as the recycled fine aggregate replacement ratios increase. Also, the test results showed that the compressive strength was decreased as the recycled aggregate replacement ratios increased and it had a conspicuous tendency to decrease when the content of the recycled aggregate exceeded 50%. Furthermore, the result indicated that the measured carbonation depth increases by 40% with the increase of the recycled aggregate replacement. In the case of the concrete having low level compressive strength, the increase of carbonation depth tends to be higher when using the RCA. However, the trend of carbonation resistivity in high level compressive strength concrete is similar to that obtained in natural aggregate concrete. Therefore, an advance on the admixture application and mix ratio control are required to improve the carbonation resistivity when using the recycled aggregate in large scale.

Analysis of Domestic Aggregate Production of Korea in 2019 (II) - by Local Governments (2019년도 국내 골재 수급 분석 (II) - 시군구단위 분석 -)

  • Hong, Sei Sun;Lee, Jin Young
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.427-439
    • /
    • 2021
  • On the base of the aggregate extraction statistics, this study tried to analyse the demand and supply of aggregate resources of each local government and provide directions for the stable and sustainable supply and demand of aggregate resources in the future. In 2019, aggregates were produced in 148 cities, about 65% of the 229 cities of Korea, but in 7 metropolitan cities with 74 local governments, only 19 cities developed the aggregate. It means that aggregate extraction is taking place in almost all regions in Korea. Sand and gravel were produced in 110 districts and 132 districts, respectively. By aggregate source, river aggregates were extracted in 4 local governments, land aggregates in 42 local governments, forest aggregates in 75 local governments, crushed aggregates in 105 local governments, and washing aggregates in 15 local governments. In other words, 81 district in Korea have not extracted land-based aggregate at all. 71 local governments produced only one type of aggregate, and 55 local governments developed two types of aggregate, and 22 local governments developed more that three types of aggregate. In 2019, the leading producing local government were, in descending order of volume, Ulju-gun, followed by Hwaseong-si, Cheongju-si, Pocheon-si, Paju-si, Yongin-si, Gimhae-si, Gwangju-si in Gyeonggi-do. 41 local governments have developed aggregates of more than 1 million m3, and the combined production of the 41 cities accounted for about 70% of national total. This shows that the aggregate extraction trend of local governments is becoming larger and more concentrated.

Characteristics of Asphalt Concrete Mixed with Polyethylene Aggregate (폐비닐 골재 혼합 아스콘의 성질)

  • Kim, Youngchin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.5-11
    • /
    • 2017
  • The 19 mm-sized aggregate was produced by melting vinyl waste (waste polyethylene film) generated from vinyl greenhouses in rural areas. It was mixed with As'cone at various weight ratios, and then insulation effect test, tension test after repeated freezing and thawing, ice pull-out strength test and field density test were conducted for the mixtures. These results demonstrated that as the mixing ratio of polyethylene aggregate increased, the insulation effect increased, due to the many pore spaces that existed in the polyethylene aggregate. After repeatedly freezing and thawing As'cone, the tensile strength significantly increased at 2.5% of the polyethylene aggregate content rather than 0% of polyethylene aggregate content but it also slightly decreased at 5% and 10% of polyethylene aggregate content in comparison to 2.5% of its polyethylene aggregate content. As'cone added with polyethylene aggregate by 2.5% resulted in lower ice pull-out strength than that of normal As'cone. As a result of the porosity test for the samples taken at the site, porosity of the As'cone, which added polyethylene aggregate, was smaller than that of the general As'cone.