• Title/Summary/Keyword: agarose matrix

Search Result 18, Processing Time 0.023 seconds

In vitro maturation on a soft agarose matrix enhances the developmental ability of pig oocytes derived from small antral follicles

  • Park, Ji Eun;Lee, Seung Tae;Lee, Geun-Shik;Lee, Eunsong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.34-41
    • /
    • 2022
  • In vivo oocytes grow and mature in ovarian follicles whereas oocytes are matured in vitro in plastic culture dishes with a hard surface. In vivo oocytes show a superior developmental ability to in vitro counterparts, indicating suboptimal environments of in vitro culture. This study aimed to evaluate the influence of an agarose matrix as a culture substrate during in vitro maturation (IVM) on the development of pig oocytes derived from small antral follicles (SAFs). Cumulus-oocyte complexes (COCs) retrieved from SAFs were grown in a plastic culture dish without an agarose matrix and then cultured for maturation in a plastic dish coated without (control) or with a 1% or 2% (w/v) agarose hydrogel. Then, the effect of the soft agarose matrix on oocyte maturation and embryonic development was assessed by analyzing intra-oocyte contents of glutathione (GSH) and reactive oxygen species (ROS), expression of VEGFA, HIF1A, and PFKP genes, and blastocyst formation after parthenogenesis. IVM of pig COCs on a 1% (w/v) agarose matrix showed a significantly higher blastocyst formation, intra-oocyte GSH contents, and transcript abundance of VEGFA. Moreover, a significantly lower intra-oocyte ROS content was detected in oocytes matured on the 1% and 2% (w/v) agarose matrices than in control. Our results demonstrated that IVM of SAFs-derived pig oocytes on a soft agarose matrix enhanced developmental ability by improving the cytoplasmic maturation of oocytes through redox balancing and regulation of gene expression.

Evaluation of Several Parameters of in situ Polymerase Chain Reaction (ISPCR) to Reduce the Leakage of Amplificants from Cells

  • Lee, Jae-Yung;Auh, Chung-Kyoon;George W. Jordan
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.70-76
    • /
    • 2002
  • Proviral DNAs from HIV-1-infected CD4+ T cells (Molt/LAV cells) were amplified and detected in infected individual cells using polymerase chain reaction and in rifu hybridization. In this in situ PCR, three parameters were considered to achieve effective amplification and retention of amplificants inside the cells by making high molecular weight PCR products intracellularly, forming agarose matrix against the cells, and maintaining the appropriate PCR temperature profile. Over the cycles of ampliHcationl tailed primers with complementary overhanging sequences at their 5' sides manufactured high molecular weight products by using short primary products as a repeating unit. Agarose matrix could prevent the diffusion of the amplificants from the cells. Use of Thermanox coverslip inside the PCR tube offered target cells a similar temperature profile to that of conventional PCR in solution.

Preparation of Agarose from Gelidium amansii for Gel Electrophoresis using Various Purification Methods and Its Resolution Characteristics for DNA (다양한 정제방법에 의한 전기영동용 한천유래 아가로즈의 제조 및 DNA분리 특성)

  • Do, Jeong-Ryong;Oh, Se-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.110-114
    • /
    • 1999
  • The present study was conducted to investigate the preparative methods of agarose for gel electrophoresis from agar. Naturally occuring agar consists of two main polysaccharides, the neutral polysaccharide agarose and the acid sulphated polysaccharide agaropectin. The sulphate and carboxyl functions of the agar are accumulated in the agaropectin. The hydrophilic, non-ionogenic, rigid and transparent gel matrix of the agarose was found to be suitable for gel electrophoresis gel filtration and affinity chromatography. Agar was purified by chitosan treatment, cetylpyridinium chloride (CPC) treatment, and polyethylene glycol (PEG) treatment. Yields of agarose purified from agar with chitosan, CPC and PEG were 56.7%, 55.6% and 62.3%. It was proper to treat with chitosan in preparative methods of agarose for gel electrophoresis from agar.

  • PDF

Evaluation of polyglycolic acid as an animal-free biomaterial for three-dimensional culture of human endometrial cells

  • Sadegh Amiri;Zohreh Bagher;Azadeh Akbari Sene;Reza Aflatoonian;Mehdi Mehdizadeh;Peiman Broki Milan;Leila Ghazizadeh;Mahnaz Ashrafi;FatemehSadat Amjadi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.259-269
    • /
    • 2022
  • Objective: Animal-free scaffolds have emerged as a potential foundation for consistent, chemically defined, and low-cost materials. Because of its good potential for high biocompatibility with reproductive tissues and well-characterized scaffold design, we investigated whether polyglycolic acid (PGA) could be used as an animal-free scaffold instead of natural fibrin-agarose, which has been used successfully for three-dimensional human endometrial cell culture. Methods: Isolated primary endometrial cells was cultured on fibrin-agarose and PGA polymers and evaluated various design parameters, such as scaffold porosity and mean fiber diameter. Cytotoxicity, scanning electron microscopy (SEM), and immunostaining experiments were conducted to examine cell activity on fabricated scaffolds. Results: The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and SEM results showed that endometrial cells grew and proliferated on both scaffolds. Immunostaining showed cytokeratin and vimentin expression in seeded cells after 7 days of culture. On both scaffolds, an epithelial arrangement of cultured cells was found on the top layer and stromal arrangement matrix on the bottom layer of the scaffolds. Therefore, fibrin-agarose and PGA scaffolds successfully mimicked the human endometrium in a way suitable for in vitro analysis. Conclusion: Both fibrin-agarose and PGA scaffolds could be used to simulate endometrial structures. However, because of environmental and ethical concerns and the low cost of synthetic polymers, we recommend using PGA as a synthetic polymer for scaffolding in research instead of natural biomaterials.

Fabrication and Characterisation of a Novel Pellicular Adsorbent Customised for the Effectvie Fluidised Bed Adsorption of Protein Products

  • Sun, Yam;Pacek, Andrzej W.;Nienow, Alvin W.;Lyddiatt, Andrew
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.6
    • /
    • pp.419-425
    • /
    • 2001
  • A dense pellicular solid matrix has been fabricated by coating 4% agarose gel on to dense zironia-silica(ZS) spheres by watr-in-oil emulsification . The agarose evenly laminated the ZS bead to a depth of 30㎛, and the resultin gpellicular assembly was characterised by densities up to 2.39g/mL and a mean particle dimeter of 136 ㎛. In comparative fluidisation tests, the pellicular solid phase exhibited a two-fold greater flow velocity than commercial benchmark ad-sorbents necessary to achieve common values of bed expansion. Furthermore, the perlicular parti-cles were characterised by improved qualities of chromatographic behaviour, particularly with re-spect to a three-fold increase in the apparent effective diffusivity of lysozyme within a pellicular assembly modified with Cibacron Blue 3GA. The properties of rapid protein adsorption/desorp-tion were attributed to the physical design and pellicular deployment of the reactive surface in the solid phase. When combined with enhanced feedstock throughput, such practical advantages recommend the pellicular assembly as a base matrix for the selective recovery of protein products from complex, particulate feedstocks(whole fermentation broths, cell disruptates and biological extracts).

  • PDF

Inhibitory Effect of Astragali Radix on Matrix Degradation in Human Articular Cartilage

  • CHOI SOOIM;PARK SO-RA;HEO TAE-RYEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1258-1266
    • /
    • 2005
  • The present study was carried out in order to assess the protective effects of calycosin-7-O-$\beta$-D-glucopyranoside, isolated from Astragali radix (AR), on hyaluronidase (HAase) and the recombinant human interleukin-$1\beta$ (IL-$1\beta$)-induced matrix degradation in human articular cartilage and chondrocytes. We isolated the active component from the n-butanol soluble fraction of AR (ARBu) as the HAase inhibitor and structurally identified as calycosin-7-O-$\beta$-D-glucopyranoside by LC-MS, IR, ${1}^H$ NMR, and ${13}^C$ NMR analyses. The $IC_{50}$ of this component on HAase was found to be 3.7 mg/ml by in vitro agarose plate assay. The protective effect of ARBu on the matrix gene expression of immortalized chondrocyte cell line C28/I2 treated with HAase was investigated using a reverse transcription polymerase chain reaction (RT-PCR), and its effect on HAase and IL-$1\beta$-induced matrix degradation in human articular cartilage was determined by a staining method and calculating the amount of degraded glycosaminoglycan (GAG) from the cultured media. Pretreatment with calycosin-7-O-$\beta$-D-glucopyranoside effectively protected human chondrocytes and articular cartilage from matrix degradation. Therefore, calycosin-7-O-$\beta$-D-glucopyranoside from AR appears to be a potential natural ant-inflammatory or antii-osteoarthritis agent and can be effectively used to protect from proteoglycan (PG) degradation.

Effects of Culture Dimensions on Maintenance of Porcine Inner Cell Mass-Derived Cell Self-Renewal

  • Baek, Song;Han, Na Rae;Yun, Jung Im;Hwang, Jae Yeon;Kim, Minseok;Park, Choon Keun;Lee, Eunsong;Lee, Seung Tae
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Despite the fact that porcine embryonic stem cells (ESCs) are a practical study tool, in vitro long-term maintenance of these cells is difficult in a two-dimensional (2D) microenvironment using cellular niche or extracellular matrix proteins. However, a three-dimensional (3D) microenvironment, similar to that enclosing the inner cell mass of the blastocyst, may improve in vitro maintenance of self-renewal. Accordingly, as a first step toward constructing a 3D microenvironment optimized to maintain porcine ESC self-renewal, we investigated different culture dimensions for porcine ICM-derived cells to enhance the maintenance of self-renewal. Porcine ICM-derived cells were cultured in agarose-based 3D hydrogel with self-renewal-friendly mechanics and in 2D culture plates with or without feeder cells. Subsequently, the effects of the 3D microenvironment on maintenance of self-renewal were identified by analyzing colony formation and morphology, alkaline phosphatase (AP) activity, and transcriptional and translational regulation of self-renewal-related genes. The 3D microenvironment using a 1.5% (w/v) agarose-based 3D hydrogel resulted in significantly more colonies with stereoscopic morphology, significantly improved AP activity, and increased protein expression of self-renewal-related genes compared to those in the 2D microenvironment. These results demonstrate that self-renewal of porcine ICM-derived cells can be maintained more effectively in a 3D microenvironment than in a 2D microenvironment. These results will help develop novel culture systems for ICM-derived cells derived from diverse species, which will contribute to stimulating basic and applicable studies related to ESCs.

유전자 재조합 형광 단백질 발현 동물세포의 고정화 및 바이오센서의 개발

  • Lee, Jeong-Eun;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.53-56
    • /
    • 2002
  • Mammalian cell based biosensor kits are expected to be in assessment of samples toxicity more sensitive and accurate. A recombinant fluorescent Chinese Hamster Ovary (CHO) cell line was known to be responsive to the various toxicants Specially. KFC- AlO cell line. which contain the c-fos SRE::GFP plasmid (pKFG). was found to be able to detect toxicants sensitively. A biosensor kit was developed by using an immobilized KFC-A10 cell line. Immobilized recombinant fluorescent cells within agarose, known as a representative hydrogel matrix, have been maintained in the matrix viably and have shown constant fluorescent levels for long time. Immobilized cells have shown the ability to detect the chemical toxicity in the keep of fluorescent level as the metabolism is inhibited under toxic conditions.

  • PDF

Identification of Novel Target Proteins of Cyclic GMP Signaling Pathways Using Chemical Proteomics

  • Kim, Eui-Kyung;Park, Ji-Man
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.299-304
    • /
    • 2003
  • For deciphering the cyclic guanosine monophosphate (cGMP) signaling pathway, we employed chemical proteomics to identify the novel target molecules of cGMP. We used cGMP that was immobilized onto agarose beads with linkers directed at three different positions of cGMP. We performed a pull-down assay using the beads as baits on tissue lysates and identified 9 proteins by MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time-of-Flight) mass spectrometry. Some of the identified proteins were previously known cGMP targets, including cGMP-dependent protein kinase and cGMP-stimulated phosphodiesterase. Surprisingly, some of the co-precipitated proteins were never formerly reported to associate with the cGMP signaling pathway. The competition binding assays showed that the interactions are not by nonspecific binding to either the linker or bead itself, but by specific binding to cGMP. Furthermore, we observed that the interactions are highly specific to cGMP against other nucleotides, such as cyclic adenosine monophosphate (cAMP) and 5'-GMP, which are structurally similar to cGMP. As one of the identified targets, MAPK1 was confirmed by immunoblotting with an anti-MAPK1 antibody. For further proof, we observed that the membrane-permeable cGMP (8-bromo cyclic GMP) stimulated mitogen-activated protein kinase 1 signaling in the treated cells. Our present study suggests that chemical proteomics can be a very useful and powerful technique for identifying the target proteins of small bioactive molecules.

Carbamoyl-phosphate synthetase 2 is identified as a novel target protein of methotrexate from chemical proteomics

  • Kim, Eui-Kyung;Park, Jong-Bae;Ha, Sang-Hoon;Ryu, Sung-Ho;Suh, Pann-Ghill
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.236-242
    • /
    • 2002
  • Using agarose-coupled methotrexate, we have successfully isolated two proteins, which have strong interactions with methotrexate. The two proteins were analyzed by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry and identified as carbamoyl-phosphate synthetase 2 and phosphoribosylglycinamide formyltransferase, respectively. Interestingly, both of these two proteins are essential key enzymes in nucleotide biosynthetic pathways, like dihydrofolate reductase, a well-known methotrexate target. We confirmed the specificity of their interactions between methotrexate and two target proteins by the methods of competition binding assay, which were followed by western blotting using antibody against carbamoyl-phosphate synthetase 2 and phosphoribosylglycinamide formyltransferase, respectively. Moreover, we could observe that carbamoyl-phosphate synthetase 2 is overexpressed in methotrexate-resistant MOLT-3 cells comparing with control MOLT-3 cells. This result indicates that carbamoyl-phosphate synthetase 2 may be a novel target of methotrexate in cancer therapy. We propose that chemical proteomics can be a powerful technique to identify target proteins of a chemical.

  • PDF