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Objective: Animal-free scaffolds have emerged as a potential foundation for consistent, chemically defined, and low-cost materials. Because 
of its good potential for high biocompatibility with reproductive tissues and well-characterized scaffold design, we investigated whether 
polyglycolic acid (PGA) could be used as an animal-free scaffold instead of natural fibrin-agarose, which has been used successfully for 
three-dimensional human endometrial cell culture. 
Methods: Isolated primary endometrial cells was cultured on fibrin-agarose and PGA polymers and evaluated various design parameters, 
such as scaffold porosity and mean fiber diameter. Cytotoxicity, scanning electron microscopy (SEM), and immunostaining experiments were 
conducted to examine cell activity on fabricated scaffolds. 
Results: The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay and SEM results showed that endometrial cells grew 
and proliferated on both scaffolds. Immunostaining showed cytokeratin and vimentin expression in seeded cells after 7 days of culture. On 
both scaffolds, an epithelial arrangement of cultured cells was found on the top layer and stromal arrangement matrix on the bottom layer of 
the scaffolds. Therefore, fibrin-agarose and PGA scaffolds successfully mimicked the human endometrium in a way suitable for in vitro analysis. 
Conclusion: Both fibrin-agarose and PGA scaffolds could be used to simulate endometrial structures. However, because of environmental 
and ethical concerns and the low cost of synthetic polymers, we recommend using PGA as a synthetic polymer for scaffolding in research in-
stead of natural biomaterials.  
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Introduction 

The endometrium is a unique tissue lining the uterus that plays a 
critical role in the reproductive system by preparing a site for embryo 
implantation [1]. Advances in designing experimental models have 
resulted in a better understanding of the human endometrial envi-
ronment and function. For decades, standard two-dimensional 
monocultures were typically used to study endometrial cell function; 
however, these traditional cultures fail to represent the complex 
three-dimensional (3D) architecture of the tissue [2]. Recent ad-
vancements in tissue engineering have led to the development of 
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3D tissue constructs utilizing matrices and a scaffold-based ap-
proach. A scaffold provides a mechanical framework that mimics the 
extracellular matrix (ECM) composition for cell growth [3-7]. Devel-
oping 3D cell culture models improves the ability to investigate the 
cellular and molecular features of tissue function and allows more 
accurate research on therapeutics [8]. The optimal 3D culture system 
conditions vary widely for each cell type or cell line [9]. Natural bio-
materials are highly biocompatible and readily available, showing 
great potential for cell viability. Hydrogel-forming natural polymers 
have several advantages, including biomimicking of the ECM and 
self-assembling capability. They have excellent biocompatibility due 
to their high hydration rate and ability to engage in diffusion and ex-
change, facilitating cell function and viability [10-15]. 

One of the most commonly used hydrogel substrates in tissue en-
gineering is fibrin, which has advantages such as a low price, good 
interactions between cells and the biomaterial, and a fibrillary and 
porous pattern. Fibrin is easy to handle [16,17], and fibrin hydrogels 
can be created from the patient’s plasma; thus, they can be consid-
ered as an autologous therapeutic product. Despite these advantag-
es, the biomechanical properties of natural polymeric materials, such 
as fibrin hydrogels, are typically relatively poor compared to native 
tissues in terms of stiffness, flexibility, resistance, and strength. 
Hence, researchers have attempted to improve the biomechanical 
properties of fibrin hydrogels by combining them with another bio-
material. From this perspective, some studies have shown that the 
addition of agarose enhanced the biomechanical properties of fibrin 
hydrogels, mainly when chemical crosslinkers were used [18-22]. 

In tissue engineering, polymers derived from animal materials, 
such as fibrin and collagen, are used to create scaffolds structurally 
identical to those of the native ECM [23,24]. However, the depen-
dence on animals has made these methods undesirable due to vari-
ability [25], environmental issues [26], and ethical concerns [27]. 
Non-animal or synthetic materials have emerged as a promising po-
tential source for consistent, chemically defined, low-cost scaffolds. 
Synthetic or natural animal component-free polymers such as cellu-
lose [28,29], chitin/chitosan [30], alginate [31], recombinant silk [32], 
polyglycolic acid (PGA) [1], polylactide [33], and polycaprolactone 
[34] provide low-cost, stable, and tunable scaffolds. 

PGA is a common synthetic polymer that has been used to sup-
port diverse cell types, including fibroblasts and epithelial cells, to re-
generate abdominal wall, urethral, and gut tissues [35-37]. The PGA 
polymer has good potential for high biocompatibility with reproduc-
tive tissues, and it is therefore a recommended suture material for 
perineal repair. It is also associated with a minimal tissue inflamma-
tory response when used as a suture material for oral tissues com-
pared to other sutures [38,39]. An electrospun PGA scaffold was se-
lected to grow a 3D model of primary bovine endometrial epithelial 

and stromal cells that reflected the endometrium's architecture [1]. 
However, PGA scaffolds have not yet been studied for the 3D culture 
of human endometrial cells. Considering the advantages and disad-
vantages of natural and synthetic scaffolds, this study was designed 
to compare the functional reconstitution of the human endometri-
um using epithelial and stromal cells between synthetic polymer 
scaffolds and natural scaffolds.  

Methods  

1. Endometrial cell isolation 
The Research Committee of Iran University of Medical Sciences re-

viewed and approved all aspects of this project with regard to ethical 
issues (IR.IUMS.REC 1396.32888). Written informed consent was ob-
tained from all subjects. Endometrial biopsies (n = 10) were obtained 
using a pipeline aspirator (Prodimed, Neuilly-en-Thelle, France) from 
fertile women during the proliferative phase of the uterus. Healthy 
fertile women (with regular menstrual cycles and at least one spon-
taneous conception) aged 20–35 years volunteered to participate in 
this study. Women who used intrauterine devices or received hor-
monal therapy during the previous 3 months were excluded. None 
of the participants had any gynecological pathologies. 

All tissue samples were collected and labeled in Hank’s balanced 
salt solution (HBSS; Sigma, St. Louis, MO, USA) supplemented with 
20% fetal bovine serum (FBS; Gibco, Waltham, MA, USA) and 1% 
penicillin/streptomycin (Sigma). The samples were processed imme-
diately following primary isolation and washed by Dulbecco’s phos-
phate-buffered saline (DPBS; Sigma). Next, the samples were minced 
into 1 × 1 mm pieces using a scalpel in a Dulbecco's modified Eagle 
medium/F-12 nutrient mixture (DMEM-F12; Sigma). The dissected 
tissue was incubated for 1 hour at 37°C in a 10 mL digest solution, 
containing trypsin/EDTA (2.5 BAEE units/mL, Sigma), collagenase I (2 
mg/mL, Sigma), and DNAse I (0.1 mg/mL, Sigma) in HBSS. After incu-
bation, the digested tissue was strained in DMEM-F12 supplemented 
with 20% FBS (Gibco) and 1% penicillin/streptomycin (Sigma) 
through a 40 μm nylon mesh cell strainer. The stromal cells were 
passed through the filter and collected. The epithelial glands that 
were kept in the strainer were back-washed and collected. The stro-
mal and epithelial glands were cultured into 75 cm2 and 25 cm2 cul-
ture flasks, respectively. All cell cultures were incubated at 37°C in a 
humid atmosphere with 5% CO2. Once the cell populations were 
~70% confluent, they were frozen and stored in liquid nitrogen until 
further usage. 

2. Three-dimensional endometrial cell co-culture 
1) Three-dimensional cultures using fibrin-agarose scaffolds 

Approximately 1.0 × 106 stromal cells were suspended in 32.7 μL 
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of culture media, and 400 μL of human plasma was added to the 
mixture. In all steps of the 3D endometrial cell co-culture, 1 nM estro-
gen and 0.902 nM progesterone were added to the DMEM-F12 me-
dium without phenol red, which was supplemented with 10% FBS 
(Gibco) and 1% penicillin/streptomycin (Sigma) and used as the cul-
ture medium. To prevent fibrinolysis, 3.8 μL of tranexamic acid (Am-
chafibrin; Rottapharm, Monza, Italy) was added. After that, 25 μL of 
melted type VII agarose (2% in DPBS) was added to achieve a final 
concentration of 0.1%. Finally, 38.5 μL of 100 mM CaCl2 was added 
to start fibrin polymerization. The mixture (total volume of 500 μL) 
was instantly transferred to a 24-well cell culture plate and incubated 
at 37°C to solidify. After 20 minutes, 500 mL of culture medium was 
added. Twenty-four hours after solidification, 3.0 × 105 epithelial cells 
were seeded on top of the scaffold. This was a modified version of Al-
aminos' 3D rabbit cornea culture protocol [40]. Figure 1A presents a 
schematic diagram of the 3D cultures performed using the fi-
brin-agarose scaffold. 

2) Three-dimensional cultures using PGA scaffolds 
The first step was to fabricate PGA scaffolds by the electrospinning 

process. A 11.5% w/v solution of PGA (Lakeshore Biomaterials; Bir-
mingham, AL, USA) in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; Fluka, 
Milwaukee, WI, USA) was prepared, and complete overnight dissolu-
tion was performed using an orbital shaker. The solution of PGA in 
HFIP was dispensed through four blunt 21-gauge steel needles con-
nected to a 10 mL plastic syringe with two syringe pumps at a flow 
rate of 0.04 mL/min. A 20-cm-long, 5-cm-thick steel mandrel covered 
in a sheet of non-stick release paper was placed 15 cm from the nee-
dle tip and rotated at 50 rpm. An 11.0 kV electrical field was applied 
between the paper-covered mandrel and the needle tip to perform 
electrospinning. Fibers were collected on the paper-covered man-
drel and formed a nonwoven scaffold sheet. The electrospinning 
process was performed at 19°C and around 38% humidity. When 
deposition ended, the scaffold was removed and dehydrated under 
vacuum at 25°C for at least 72 hours. Next, 13-mm discs were cut 
from these scaffolds and kept in moisture-barrier pouches including 
a desiccant. The pouches were sterilized using gamma irradiation. 

For 3D endometrial cell co-culturing, the PGA scaffold (13-mm di-
ameter) was fixed to the well of a culture plate by an 8-mm cloning 
cylinder. To pre-wet the scaffolds, we filled the cloning cylinder with 

Figure 1. Diagrammatic scheme of the development of the three-dimensional (3D) endometrial culture systems. (A) A 3D matrix consists of 
stromal cells, human plasma, tranexamic acid (TA), CaCl2, and agarose. After 24 hours, epithelial cells are seeded on the top of the 3D matrix 
to form a monolayer. (B) Human endometrial stromal cells (hESCs) cultured on the polyglycolic acid (PGA) scaffold. After 24 hours, human 
endometrial epithelial cells (hEECs) are seeded on the top of the scaffold.
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300 μL of DMEM-F12. Approximately 1.0 × 106 stromal cells per scaf-
fold in 200 μL of culture medium were seeded onto the wetted scaf-
fold. After 4 hours, another 3,000 μL and 100 μL of DMEM-F12 was 
added to the outer and inner parts of the cloning cylinder, respec-
tively. The stromal cell-seeded PGA scaffolds were incubated at 37°C 
in a humid atmosphere with 5% CO2. After 24 hours, 3.0 × 105 epi-
thelial cells were seeded upon the scaffold. The culture medium was 
changed every 48 hours. Scaffolds were cultured for up to 7 days be-
fore being removed from the culture medium for histological exam-
inations on days 1, 2, 5, and 7. Figure 1B presents a schematic dia-
gram of the 3D cultures using the PGA scaffold. 

3. Cytotoxicity assay 
The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium 

bromide) assay was applied to evaluate changes in the proliferation 
of viable cells seeded on the scaffolds. In the 24-well culture plates, 
the scaffolds consisted of epithelial and stromal cells that were free 
of culture medium and washed by DPBS. Next, 200 μL of MTT solu-
tion (5 mg/mL) was mixed with 800 μL of culture medium. The mix-
ture was added to the scaffold and incubated at 37°C in a humid at-
mosphere with 5% CO2 for 3 hours. The MTT solution was removed. 
For cell lysis and the dissolution of formazan crystals, 200 μL of di-
methyl sulfoxide (DMSO) was added. Then, 100 μL of DMSO–for-
mazan solution was transferred to each well of a 96-well plate (SPL, 
Pocheon, Korea) and its optical density (OD) was measured at 570 
nm absorbance with a plate reader (Polarstar Omega; BMG Labware, 
Aylesbury, UK). The MTT results for the scaffolds are reported as OD 
values. 

4. Cell attachment assay 
For the cell attachment assay, the culture medium was removed, 

and the scaffold structures were washed twice in DPBS for 5 minutes 
for fixation. The scaffolds were immersed in 2% paraformaldehyde 
for 5 minutes before being washed three times in DPBS. The scaffold 
structures were stored at 4°C in glutaraldehyde (2%) or paraformal-
dehyde (2%), respectively, for further processing (scanning electron 
microscopy [SEM] imaging and wax embedding). 

1) Immunohistochemistry 
The embedded scaffolds were evaluated with dual immunocyto-

chemistry. Epithelial cells were identified with rabbit anti-cytokeratin 
(Abcam, Cambridge, UK) and stromal cells with mouse anti-vimentin 
(Sigma). Goat anti-rabbit immunoglobulin G conjugated with FITC 
(Abcam) and rabbit anti-mouse polyclonal antibody conjugated with 
Texas red (Jackson Immunoresearch, West Grove, PA, USA) used as 
secondary antibodies were diluted to 1:800 in phosphate-buffered 
saline (PBS) containing 1% bovine serum albumin (BSA). The scaffold 

sections were de-waxed in xylene two times, for 2 minutes each. 
Then, a graded series of ethanol (100%, 90%, 70%, and 50%) and de-
ionized water were used for rehydration (2 minutes each). The slides 
were incubated in boiling sodium citrate buffer (pH 6.0) for 3 min-
utes, and then cooled and washed in PBS with 0.025% Triton X-100 
(Sigma). Next, they were blocked in blocking solution (5% donkey 
serum+PBS+1% BSA) for 2 hours. Diluted primary antibody (1:100 in 
PBS containing 1% BSA) was added to the slides and incubated over-
night at 4°C. Later, the slides were washed three times in PBS con-
taining 1% BSA for 5 minutes each. Diluted secondary antibody was 
applied to the slides and incubated at room temperature for 1.5 
hours in darkness. The slides were subjected to three washes in PBS 
containing 1% BSA and mounted using 4',6-diamidino-2-phenylin-
dole as the last step. 

2) Scanning electron microscopy 
For SEM, the scaffold structures were rinsed three times in DPBS 

and fixed in 2% glutaraldehyde for 3 days at 4°C. Then after washing 
with deionized water, a graded series of ethanol (30%, 50%, 70%, 
95%, 100%, and 100% dry ethanol) was used to dehydrate the scaf-
folds. After dehydration, the specimens were frozen in an ultra-low 
temperature freezer (–80°C) and moved to a freezer dryer (Edwards 
Super Modulyo) for drying. Then, specimens were mounted and 
sputter-coated with gold. Samples were observed under SEM 
(AIS2300; Seron Technology, Uiwang, Korea) that was run at 20.0 kV. 

5. Statistics 
Data were presented as the mean ± SEM and were analyzed using 

GraphPad Prism v9 (GraphPad, La Jolla, CA, USA). Data for the physi-
cal characteristics of the scaffolds and proliferation on scaffolds were 
compared using analysis of variance. A p-value < 0.05 was consid-
ered to indicate statistical significance. 

Results 

1. Isolation and culture of endometrial epithelial and stromal 
cells 

Human endometrial tissues obtained by a pipelle aspirator were 
enzymatically digested and expanded in two-dimensional cultures 
to achieve a sufficient number of cells. As described, the retaining 
epithelial glands in the strainer were back-washed and cultured in 25 
cm2 culture flasks (Figure 2A). Epithelial glands attached to the flask 
within 24 hours (Figure 2B). Epithelial glands attached to each other 
extended and formed clusters that resembled islands (Figure 2C). 
These clusters eventually formed a monolayer of epithelial cells. In 
5–7 days, a monolayer of confluent epithelial cells was achieved. At 
this stage, the epithelial cell monolayer folded over and formed 
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dome-shaped structures (Figure 2D). The collected stromal cells from 
the filtrate were also cultured in a 75 cm2 culture flask. After 12 hours, 
the culture medium was changed to remove tissue debris, blood 
cells, and unattached epithelial cells. In 3–4 days, the stromal cells 
were confluent (Figure 2E). The medium in the cell culture was 
changed every 48 hours. 

2. Initial assessment of the scaffolds 
Electrospun PGA fibers were assembled into a dense mesh-like lay-

er, as visualized by SEM (Figure 3). The physical features of both PGA 
and fibrin-agarose scaffolds were compared (Figure 4). The mean di-
ameter of the fibers and porosity properties were not significantly 
different (the mean diameter of the fibers was 10.43 μm and 10.24 
μm in the PGA and fibrin agarose scaffolds, the mean pore diameter 
of the PGA and fibrin-agarose scaffolds was 52.06 μm and 49.2 μm, 
and the largest pore size diameter in the PGA and fibrin-agarose scaf-
folds was 101.35 μm and 98.05 μm, respectively). Cell proliferation on 
scaffolds seeded with stromal and epithelial cells was assessed using 
the MTT assay. The number of growing cells in the co-culture could 
not be calculated from the OD values because the co-culture did not 

contain a unique cell type, and the MTT OD standard curve against 
cell number is specific for the cell type (Figure 5) [41]. 

The MTT OD of the fibrin-agarose scaffold seeded with stromal 
and epithelial cells increased during 7 days of cell culture (p < 0.05). 
The MTT OD of the electrospun PGA scaffold seeded with stromal 
and epithelial cells also increased during 7 days of cell culture 
(p < 0.05). The MTT OD of the fibrin-agarose scaffold was higher than 
that of the electrospun PGA scaffold at the same times of culture, but 
the difference was not statistically significant (p ≥ 0.05) (Figure 5).  

3. Description of the 3D co-culture of primary human 
endometrial epithelial and stromal cells 

In the 3D culture, the origins and location of the epithelial and 
stromal cells were defined by cytokeratin and vimentin immunos-
taining, respectively. Immunohistochemistry (IHC) for cytokeratin 
was positive only for epithelial cells in the surface epithelium (Figure 
6). IHC for vimentin was positive for the stromal cells located in the 
3D matrix (Figure 6). On the top part of both 3D culture systems, epi-
thelial cells formed a constricted cell monolayer. The stromal cells 
combined with the fibrin-agarose gel or PGA scaffolds became 

Figure 2. Light microscopy of endometrial cells. (A) Epithelial glands. (B) Initial attachment of epithelial cells into the flask. (C) Island-
shaped clusters of epithelial cells. (D) Confluent monolayer of epithelial cells with a dome-like structure. (E) Confluent stromal cells. ×50 
magnification.
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Figure 3. Scanning electron microscopy images of scaffolds prior to cell seeding. (A) Fibrin-agarose scaffold. (B) Electrospun polyglycolic acid 
scaffold.
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Figure 4. Comparison of physical characteristics between the fibrin-agarose scaffold and the electrospun polyglycolic acid (PGA) scaffold. 
Comparison of the mean pore size diameter (A) and the mean fiber diameter (B) in two scaffolds; these parameters were not significantly 
different (p≥0.05). Histogram of pore size diameter (C) and fiber diameter (D).
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lengthened and expanded, displaying that the 3D culture systems 
supplied a suitable environment for the growth of endometrial cells. 

These results showed that both scaffolds—fibrin-agarose and 
PGA—could simulate the structure of the human endometrium. 
SEM was used to assess epithelial cell growth and proliferation on 
the scaffolds’ surfaces. The epithelial cell clusters were more distinct 
on the fibrin-agarose scaffold than on the PGA scaffold, which may 
indicate epithelial gland formation in this structure (Figure 7). 

Discussion 

In this study, fibrin-agarose (a natural biomaterial) and electrospun 
PGA (a synthetic, animal-free polymer) were selected as scaffolds to 
support the proliferation and growth of human endometrial con-
structs. The results of the MTT assay showed that neither of these 
two scaffolds had a toxic effect on the survival of endometrial cells. 
IHC showed that stromal cells grew inside the scaffold and epithelial 
cells formed a monolayer on the matrix. These cells were able to 
grow on the scaffolds, and these scaffolds were able to create an en-
dometrial-like structure, as IHC proved. 

MacKintosh et al. [1] designed a new 3D culture system for bovine 
endometrial cells using electrospun PGA as a scaffold, and Wang et 
al. [42] used a fibrin-agarose scaffold to simulate the human endo-
metrial structure. As shown by the results for cell adhesion and pro-
liferation on the scaffolds, both scaffolds were suitable for primary 
human endometrial epithelial and stromal cells. The scaffolds main-

Figure 6. Immunohistochemistry images of co-cultured epithelial 
and stromal cells seeded on fibrin-agarose and electrospun 
polyglycolic acid (PGA) scaffolds on day 7 of culture. Cross-sectional 
expression of vimentin (red) or cytokeratin (green) by endometrial 
stromal and epithelial cells on both scaffolds, respectively. DAPI, 
4',6-diamidino-2-phenylindole..

Figure 5. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl 
tetrazolium bromide) assay was used to measure the cell viability 
of stromal and epithelial cells co-cultured with the electrospun 
polyglycolic acid (PGA) scaffold or the fibrin-agarose scaffold. The 
MTT optical density of both the PGA and fibrin-agarose scaffolds 
seeded with stromal and epithelial cells increased during 7 days of 
cell culture. The cell viability did not show any significant between-
group differences over time (p≥0.05).
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tained the growth of a monolayer of epithelial cells upon multiple 
layers of stromal cells, similar to natural endometrial tissue architec-
ture. The PGA electrospun scaffold has a significant advantage, in 
that it synthetically mimics the ECM protein, collagen, and provides a 
perfect context to support the growth of tissue [43,44]. However, 
PGA nonwoven scaffolds have several limitations, such as a high 
degradation rate and poor mechanical properties. PGA electrospun 
scaffolds have been broadly used in the cell culture of different tis-
sues, including human skin and vascular tissue and bovine endome-
trial and aortic endothelial cells [45,46]. However, to the best of our 
knowledge, this report is the first model of human endometrial cells 
growing on PGA electrospun scaffolds. 

A scaffold is expected to support the attachment and growth of 
cells, provoke ECM deposition, and have proper porosity to facilitate 
gas diffusion, molecular signaling, and waste and nutrient products 
to enable the differentiation and survival of cells [47]. As demonstrat-
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ed using IHC, both scaffolds simulated the human endometrial struc-
ture. In both culture systems, epithelial cells formed a single layer of 
tight cells on the top of the scaffolds. Stromal cells were embedded 
into the fibrin-agarose gel, or PGA scaffolds became extended and 
spread out, proving that these systems of 3D culture provided a 
proper environment for cell growth. 

In an endometrial 3D model, Wang et al. [42] detected sponta-
neous gland formation by epithelial cells in the 3D constructs of stro-
mal cells, probably from epithelial cell contamination within the 
population of stromal cells or from differentiation of uterine stem 

cells into epithelial cells during culture. We did not recognize epithe-
lial glands by IHC on either scaffold. However, SEM imaging showed 
that clustered forms of epithelial cells grew upon the fibrin-agarose 
scaffolds, representing endometrial glands. The proliferation of stro-
mal cells co-cultured with epithelial cells was observed over time on 
both PGA electrospun and fibrin-agarose scaffolds. The capability of 
these scaffolds to facilitate the growth of both stromal and epithelial 
cells was proven using histology and the MTT assay. We focused on 
embedding stromal cells inside the scaffold, on top of which a sus-
pension of epithelial cells would be seeded. The growth of stromal 

Figure 7. Evaluation of epithelial cell growth and proliferation on the surface of fibrin-agarose (A) and electrospun polyglycolic acid (PGA; B) 
scaffolds by scanning electron microscopy on day 7 of culture. Epithelial cell clusters were more distinct on the fibrin-agarose scaffold than on 
the PGA scaffold.
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cells within the scaffolds and growth of the epithelial cells on the su-
perficial layer of the scaffold was confirmed using immunocyto-
chemistry. On the electrospun scaffold, most stromal cells were con-
centrated on the upper part of the scaffold and developed into and 
on top of the scaffold, which led to an increase in the thickness of the 
entire structure. The growth and expansion of stromal cells within 
the scaffolds showed that the scaffold's porosity was adequate for 
cell transfer, and stromal cells were also detected in the deeper parts 
of the scaffolds. 

Our results showed that both scaffolds facilitated the growth and 
proliferation of endometrial cells and could create endometrial-like 
structures. Therefore, due to the environmental and ethical concerns 
about animal resources in relation to natural polymers such as fibrin 
and the reasonable price of synthetic scaffolds, we recommend us-
ing synthetic scaffolds such as PGA to create endometrial-like struc-
tures in research studies. While the endometrial arrangement report-
ed in this study only included epithelial and stromal cells, normal en-
dometrium also contains glands, a vascular system, and immune cell 
populations. Although establishing an endometrial culture system 
using the two major cell types (epithelial and stromal cells) is benefi-
cial, the involvement of other related cell types in the co-culture 
model could be investigated in further studies using methods such 
as organoids. 

This study presents a straightforward model in which, similar to a 
fibrin-agarose (a natural biomaterial) scaffold, multiple layers of hu-
man endometrial stromal cells were cultured in 3D on a PGA electro-
spun scaffold (a synthetic, animal-free polymer) overlaid by a mono-
layer of human endometrial epithelial cells, and the overall arrange-
ment was similar to the native endometrium. Replacing animal-de-
rived hydrogels using a synthetic scaffold, such as electrospun PGA, 
has many potential benefits in clinical applications in terms of physi-
ological, and structural properties, as well as environmental and eth-
ical considerations. The accessibility of an advanced 3D model of en-
dometrial tissue will also be useful for studying diseases and devel-
oping treatment methods. However, further studies are needed to 
assess and improve these models. 
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