• 제목/요약/키워드: aftershock hazard

검색결과 6건 처리시간 0.021초

Markov-based time-varying risk assessment of the subway station considering mainshock and aftershock hazards

  • Wei Che;Pengfei Chang;Mingyi Sun
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.303-316
    • /
    • 2023
  • Rapid post-earthquake damage estimation of subway stations is particularly necessary to improve short-term crisis management and safety measures of urban subway systems after a destructive earthquake. The conventional Performance-Based Earthquake Engineering (PBEE) framework with constant earthquake occurrence rate is invalid to estimate the aftershock risk because of the time-varying rate of aftershocks and the uncertainty of mainshock-damaged state before the occurrence of aftershocks. This study presents a time-varying probabilistic seismic risk assessment framework for underground structures considering mainshock and aftershock hazards. A discrete non-omogeneous Markov process is adopted to quantify the time-varying nature of aftershock hazard and the uncertainties of structural damage states following mainshock. The time-varying seismic risk of a typical rectangular frame subway station is assessed under mainshock-only (MS) hazard and mainshock-aftershock (MSAS) hazard. The results show that the probabilities of exceeding same limit states over the service life under MSAS hazard are larger than the values under MS hazard. For the same probability of exceedance, the higher response demands are found when aftershocks are considered. As the severity of damage state for the station structure increases, the difference of the probability of exceedance increases when aftershocks are considered. PSDR=1.0% is used as the collapse prevention performance criteria for the subway station is reasonable for both the MS hazard and MSAS hazard. However, if the effect of aftershock hazard is neglected, it can significantly underestimate the response demands and the uncertainties of potential damage states for the subway station over the service life.

Probabilistic seismic demand assessment of self-centering concrete frames under mainshock-aftershock excitations

  • Song, Long L.;Guo, Tong;Shi, Xin
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.641-652
    • /
    • 2019
  • This paper investigates the effect of aftershocks on the seismic performance of self-centering (SC) prestressed concrete frames using the probabilistic seismic demand analysis methodology. For this purpose, a 4-story SC concrete frame and a conventional reinforced concrete (RC) frame are designed and numerically analyzed through nonlinear dynamic analyses based on a set of as-recorded mainshock-aftershock seismic sequences. The peak and residual story drifts are selected as the demand parameters. The probabilistic seismic demand models of the SC and RC frames are compared, and the SC frame is found to have less dispersion of peak and residual story drifts. The results of drift demand hazard analyses reveal that the SC frame experiences lower peak story drift hazards and significantly reduced residual story drift hazards than the RC frame when subjected to the mainshocks only or the mainshock-aftershock sequences, which demonstrates the advantages of the SC frame over the RC frame. For both the SC and RC frames, the influence of as-recorded aftershocks on the drift demand hazards is small. It is shown that artificial aftershocks can produce notably increased drift demand hazards of the RC frame, while the incremental effect of artificial aftershocks on the drift demand hazards of the SC frame is much smaller. It is also found that aftershock polarity does not influence the drift demand hazards of both the SC and RC frames.

Seismic damage of long span steel tower suspension bridge considering strong aftershocks

  • Xie, X.;Lin, G.;Duan, Y.F.;Zhao, J.L.;Wang, R.Z.
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.767-781
    • /
    • 2012
  • The residual capacity against collapse of a main shock-damaged bridge can be coupled with the aftershock ground motion hazard to make an objective decision on its probability of collapse in aftershocks. In this paper, a steel tower suspension bridge with a main span of 2000 m is adopted for a case-study. Seismic responses of the bridge in longitudinal and transversal directions are analyzed using dynamic elasto-plastic finite displacement theory. The analysis is conducted in two stages: main shock and aftershocks. The ability of the main shock-damaged bridge to resist aftershocks is discussed. Results show that the damage caused by accumulated plastic strain can be ignored in the long-span suspension bridge. And under longitudinal and transversal seismic excitations, the damage is prone to occur at higher positions of the tower and the shaft-beam junctions. When aftershocks are not large enough to cause plastic strain in the structure, the aftershock excitation can be ignored in the seismic damage analysis of the bridge. It is also found that the assessment of seismic damage can be determined by superposition of damage under independent action of seismic excitations.

CURRENT ISSUES ON PRA REGARDING SEISMIC AND TSUNAMI EVENTS AT MULTI UNITS AND SITES BASED ON LESSONS LEARNED FROM TOHOKU EARTHQUAKE/TSUNAMI

  • Ebisawa, Katsumi;Fujita, Masatoshi;Iwabuchi, Yoko;Sugino, Hideharu
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.437-452
    • /
    • 2012
  • The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Dai-ichi NPP (F1-NPP) were overwhelmed by the tsunami and core damage occurred. This paper describes the overview of F1-NPP accident and the usability of tsunami PRA at Tohoku earthquake. The paper makes reference to the following current issues: influence on seismic hazard of gigantic aftershocks and triggered earthquakes, concepts for evaluating core damage frequency considering common cause failure with correlation coefficient against seismic event at multi units and sites, and concepts of "seismic-tsunami PSA" considering a combination of seismic motion and tsunami effects.

과거 2000년간 서울 및 수도권에서 발생한 피해 지진의 특성 (Characteristics of Damaging Earthquakes Occurred in Seoul Metropolitan Area for the Last Two Thousand Years)

  • 경재복
    • 한국지구과학회지
    • /
    • 제33권7호
    • /
    • pp.637-644
    • /
    • 2012
  • 서울을 비롯한 수도권 일대는 우리나라 인구의 약 40%가 집중되어 갑작스럽게 닥치는 지진재해에 매우 취약한 곳이다. 역사문헌 분석에 의하면 과거 2000여 년간 서울 지역에서 발생한 피해 지진의 최대 크기는 MMI 진도 VIII-IX로 평가되며, 이들 지진으로 건물의 큰 흔들림, 담장과 성첩의 붕괴, 민가 붕괴, 다수의 사상자가 발생하였다. 서울 지역에서 MM 진도 VIII 이상의 피해지진은 1세기(A.D. 27년, 89년)에 2회 발생하였으며, 약 1430여년의 긴 휴지기 후 16-17세기(1518년, 1613년, 1692년)에 다시 3회 발생하였고, 그 후 현재 까지 휴지기 상태이다. 1518년 서울 지진(진도 VIII-IX)시에는 약 19일에 걸쳐 24회 이상의 여진이 발생하였으며, 서울 인접 지역과 황해도 지역에도 20여 일간에 걸쳐 많은 유발지진을 발생시켰다. 역사문헌에 근거한 서울 지역의 발생 가능한 최대 피해 지진은 진도 VIII-IX 이며 이러한 지진의 발생은 약 1400-1500여년의 긴 간격을 보인다.

Collapse Vulnerability and Fragility Analysis of Substandard RC Bridges Rehabilitated with Different Repair Jackets Under Post-mainshock Cascading Events

  • Fakharifar, Mostafa;Chen, Genda;Dalvand, Ahmad;Shamsabadi, Anoosh
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권3호
    • /
    • pp.345-367
    • /
    • 2015
  • Past earthquakes have signaled the increased collapse vulnerability of mainshock-damaged bridge piers and urgent need of repair interventions prior to subsequent cascading hazard events, such as aftershocks, triggered by the mainshock (MS). The overarching goal of this study is to quantify the collapse vulnerability of mainshock-damaged substandard RC bridge piers rehabilitated with different repair jackets (FRP, conventional thick steel and hybrid jacket) under aftershock (AS) attacks of various intensities. The efficacy of repair jackets on post-MS resilience of repaired bridges is quantified for a prototype two-span single-column bridge bent with lap-splice deficiency at column-footing interface. Extensive number of incremental dynamic time history analyses on numerical finite element bridge models with deteriorating properties under back-to-back MS-AS sequences were utilized to evaluate the efficacy of different repair jackets on the post-repair behavior of RC bridges subjected to AS attacks. Results indicate the dramatic impact of repair jacket application on post-MS resilience of damaged bridge piers-up to 45.5 % increase of structural collapse capacity-subjected to aftershocks of multiple intensities. Besides, the efficacy of repair jackets is found to be proportionate to the intensity of AS attacks. Moreover, the steel jacket exhibited to be the most vulnerable repair intervention compared to CFRP, irrespective of the seismic sequence (severe MS-severe or moderate AS) or earthquake type (near-fault or far-fault).