• Title/Summary/Keyword: affinity binding

Search Result 788, Processing Time 0.021 seconds

Receptor Binding Affinities of Synthetic Cannabinoids Determined by Non-Isotopic Receptor Binding Assay

  • Cha, Hye Jin;Song, Yun Jeong;Lee, Da Eun;Kim, Young-Hoon;Shin, Jisoon;Jang, Choon-Gon;Suh, Soo Kyung;Kim, Sung Jin;Yun, Jaesuk
    • Toxicological Research
    • /
    • v.35 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • A major predictor of the efficacy of natural or synthetic cannabinoids is their binding affinity to the cannabinoid type I receptor ($CB_1$) in the central nervous system, as the main psychological effects of cannabinoids are achieved via binding to this receptor. Conventionally, receptor binding assays have been performed using isotopes, which are inconvenient owing to the effects of radioactivity. In the present study, the binding affinities of five cannabinoids for purified $CB_1$ were measured using a surface plasmon resonance (SPR) technique as a putative non-isotopic receptor binding assay. Results were compared with those of a radio-isotope-labeled receptor binding assay. The representative natural cannabinoid ${\Delta}^9$-tetrahydrocannabinol and four synthetic cannabinoids, JWH-015, JWH-210, RCS-4, and JWH-250, were assessed using both the SPR biosensor assay and the conventional isotopic receptor binding assay. The binding affinities of the test substances to $CB_1$ were determined to be (from highest to lowest) $9.52{\times}10^{-3}M$ (JWH-210), $6.54{\times}10^{-12}M$ (JWH-250), $1.56{\times}10^{-11}M$ (${\Delta}^9$-tetrahydrocannabinol), $2.75{\times}10^{-11}M$ (RCS-4), and $6.80{\times}10^{-11}M$ (JWH-015) using the non-isotopic method. Using the conventional isotopic receptor binding assay, the same order of affinities was observed. In conclusion, our results support the use of kinetic analysis via SPR in place of the isotopic receptor binding assay. To replace the receptor binding affinity assay with SPR techniques in routine assays, further studies for method validation will be needed in the future.

The Third Intracellular Loop of truman ${\beta}_2$-adrenergic Receptor Expressed in E. coli Decreased Binding Affinity of Isoproterenol to ${\beta}_2$-adrenergic Receptor

  • Shin, Jin-Chul;Shin, Chan-Young;Lee, Mi-Ok;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.103-109
    • /
    • 1996
  • To investigate the effect of the third intracellular loop (i3 loop) peptide of human $\beta$$_2$-adrenergic receptor on receptor agonist binding, we expressed third intracellular loop region of human $\beta$$_2$-adrenergic receptor as glutathione S-transferase fusion protein in E. coli. DNA fragment of the receptor gene which encodes amino acid 221-274 of human $\beta$$_2$-adrenergic receptor was amplified by polymerase chain reaction and subcloned into the bacterial fusion protein expression vector pGEX-CS and expressed as a form of glutathione-S-transferase (GST) fusion protein in E. coli DH5$\alpha$. The receptor fusion protein was identified by SDS-PAGE and Western blot using monoclonal anti-GST antibody. The fusion protein expressed in this study was purified to an apparent homogeneity by glutathione Sepharose CL-4B affinity chromatography. The purified i3 loop fusion proteins at a concentration of 10 $\mu\textrm{g}$/ι caused right shift of the isoproterenol competition curve of [$^3$H]Dihydroalprenolol binding to hamster lung $\beta$$_2$-adrenergic receptor indicating lowered affinity of isoproterenol to $\beta$$_2$-adrenergic receptor possibly due to the uncoupling of receptor and G protein in the presence of the fusion protein. The uncoupling of receptor and G protein suggests that i3 loop region plays a critical role on $\beta$$_2$-adrenergic receptor G protein coupling.

  • PDF

Species Differences in Affinity and Efficacy of Carbachol for Ileal Muscarinic Receptors

  • Lee, Shin-Woong;Kim, Joo-Yeon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.87-87
    • /
    • 1995
  • The muscarinic effects of carbachol were compared on the isolated ileums of guinea-pig, rat and rabbit to elucidate the underlying mechanism of species differences in sensitivity for carbachol. The ED$\_$50/ value estimated on the guinea-pig ileum was 4 to 6-fold lower than those obtained on the rat and rabbit ileums, but the K$\_$A/ values of carbachol determined by functional assays were almost identical with 12-l7 ${\mu}$M in all of three ileums. The competition data of carbachol for [$^3$H]QNB binding were best described by a two-site model yielding the Ki values of 0.4-0.6${\mu}$M and 12-16${\mu}$M for high(K$\_$H/) and low(K$\_$L/) affinity sites, respectively. The low affinity dissociation constants(K$\_$L/) of carbachol determined from receptor binding studies thus were not significantly different from the K$\_$A/ values estimated from functional studies. The percentage of receptor occupation that carbachol requires for half-maximal response was approximately 3 to 5-fold lower in guinea-pig compared to rat and rabbit whereas the density of muscarinic binding sites per gram of ileum measured by [$^3$H]QNB saturation isotherms was two-fold higher in guinea-pig than that in rat and rabbit. Therefore, the numbers of muscarinic receptors occupied at ED$\_$50/ values of carbachol were about two-fold lower in guinea-pig, suggesting two-fold greater intrinsic efficacy. These results indicate that the guinea-pig ileum has higher muscarinic receptor density and greater intrinsic efficacy for carbachol than the rat and rabbit ileums.

  • PDF

Iron Binding Peptides from Casein Hydrolysates Produced by Alcalase (Casein으로부터 Alcalase에 의해 생성된 철분결합 Peptide)

  • Choi, In-Wook;Kim, Kee-Sung;Lim, Sang-Dong;Lim, Sin-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.218-223
    • /
    • 1998
  • Casein was hydrolyzed by alcalase to produce iron binding peptide (IBP). IBP was effectively separated from casein hydrolysates by immobilized $Fe^{3+}$ affinity chromatography and further purified by reverse phase chromatography. $25,\;50\;and\;100\;{\mu}g/mL$ of IBP solubilized $4.2,\;5.7\;and\;7.1\;{\mu}g$ of ferric at duodenum condition $(pH\;6,\;37^{\circ}C)$, respectively. According to the result of MALDI analysis, molecular weight of IBP was determined to 2,175 dalton. IBP was mainly composed of proline (24.5 mol%), lysine (15.7 mol%), and glutamine or glutamic acid (14.9 mol%) and its N-terminal sequence was Met-Ala-Pro-Lys-His. According to the information obtained from molecular weight, amino acids composition and N-terminal sequence of IBP, it was evident that IBP was from f102-119 of ${\beta}-casein$.

  • PDF

Elucidation of the Molecular Interaction between miRNAs and the HOXA9 Gene, Involved in Acute Myeloid Leukemia, by the Assistance of Argonaute Protein through a Computational Approach

  • Das, Rohit Pritam;Konkimalla, V. Badireenath;Rath, Surya Narayan;Hansa, Jagadish;Jagdeb, Manaswini
    • Genomics & Informatics
    • /
    • v.13 no.2
    • /
    • pp.45-52
    • /
    • 2015
  • Acute myeloid leukemia is a well characterized blood cancer in which the unnatural growth of immature white blood cell takes place, where several genes transcription is regulated by the micro RNAs (miRNAs). Argonaute (AGO) protein is a protein family that binds to the miRNAs and mRNA complex where a strong binding affinity is crucial for its RNA silencing function. By understanding pattern recognition between the miRNAs-mRNA complex and its binding affinity with AGO protein, one can decipher the regulation of a particular gene and develop suitable siRNA for the same in disease condition. In the current work, HOXA9 gene has been selected from literature, whose deregulation is well-established in acute myeloid leukemia. Four miRNAs (mir-145, mir-126, let-7a, and mir-196b) have been selected to target mRNA of HOXA9 (NCBI accession No. NM_152739.3). The binding interaction between mRNAs and mRNA of HOXA9 gene was studied computationally. From result, it was observed mir-145 has highest affinity for HOXA9 gene. Furthermore, the interaction between miRNAs-mRNA duplex of all chosen miRNAs are docked with AGO protein (PDB ID: 3F73, chain A) to study their interaction at molecular level through an in silico approach. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding of AGO-assisted miRNA based gene silencing mechanism in HOXA9 gene associated in acute myeloid leukemia computationally.

Structural dynamics insights into the M306L, M306V, and D1024N mutations in Mycobacterium tuberculosis inducing resistance to ethambutol

  • Yustinus Maladan;Dodi Safari;Arli Aditya Parikesit
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.32.1-32.11
    • /
    • 2023
  • Resistance to anti-tuberculosis drugs, especially ethambutol (EMB), has been widely reported worldwide. EMB resistance is caused by mutations in the embB gene, which encodes the arabinosyl transferase enzyme. This study aimed to detect mutations in the embB gene of Mycobacterium tuberculosis from Papua and to evaluate their impact on the effectiveness of EMB. We analyzed 20 samples of M. tuberculosis culture that had undergone whole-genome sequencing, of which 19 samples were of sufficient quality for further bioinformatics analysis. Mutation analysis was performed using TBProfiler, which identified M306L, M306V, D1024N, and E378A mutations. In sample TB035, the M306L mutation was present along with E378A. The binding affinity of EMB to arabinosyl transferase was calculated using AutoDock Vina. The molecular docking results revealed that all mutants demonstrated an increased binding affinity to EMB compared to the native protein (-0.948 kcal/mol). The presence of the M306L mutation, when coexisting with E378A, resulted in a slight increase in binding affinity compared to the M306L mutation alone. The molecular dynamics simulation results indicated that the M306L, M306L + E378A, M306V, and E378A mutants decreased protein stability. Conversely, the D1024N mutant exhibited stability comparable to the native protein. In conclusion, this study suggests that the M306L, M306L + E378A, M306V, and E378A mutations may contribute to EMB resistance, while the D1024N mutation may be consistent with continued susceptibility to EMB.

Na, K-ATPase Activity in the Aged Erythrocytes of Hypertensive Rats (고혈압쥐 노화 적혈구에서의 Na, K-ATPase에 관한 연구)

  • Park, Chang-Kil;Hur, Gang-Min;Seok, Jung-Ho;Lee, Jae-Heun
    • The Korean Journal of Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.33-43
    • /
    • 1991
  • To study the age dependent change of Na, K-ATPase in the erythrocyte of hypertensive rat, 1-kidey 1-clip hypertensive rat was made by the removal of right kidney and partial ligation of left renal artery. After 4 weeks, aged erythrocyte fraction was separated by density gradient centrifugation, and Na, K-ATPase activity and $^3H-ouabain$ binding with ghost cell membrane and ouabain sensitive Rb-uptake with whole cell were measured. 1) In the hypertensive rats, blood pressure was significantly increased to 165.5/119.0 mmHg (systolic/diastolic). Mean corpuscular volume and membrane protein(mg) per $10^9RBC$ were decreased and hemoglobin content was increased in the aged erythrocyte. 2) Na, K-ATPase activity in the solution containing 110 mM NaCl and 10 mM KCI, was decreased in hypertensive rat, and decreased in aged erythrocyte of both group. 3) Ouabain sensitive Rb-uptake by low RbCl concentration(4 mM) was slightly decreased in aged erythrocyte compared to that in young erythrocyte of each group, but slightly increased in young erythrocyte in hypertensive rat compared to that in normotensive rat. 4) Ouabain sensitive Rb-uptake by high RbCl concentration(16 mM) was decreased about 30% to 50 % in aged erythrocyte in both group. And in hypertensive rat, especially in young erythrocyte it was significantly decreased compared to that in normotensive rats. 5) $^3H-ouabain$ binding at 0.13 or $1{\times}10^-6M$ ouabain concentration was slightly decreased in aged erythrocyte of normotensive rat, and significantly decreased in aged erythrocyte of hypertensive rats. 6) $^3H-ouabain$ binding at 6 or $64{\times}10^-6M$ ouabain concentration is slightly decreased in aged erythrocyte of both group, but significantly decreased in young and aged erythrocyte of hypertensive rats compared to that of normotensive rats. The present results suggest that (1) in the young erythrocyte of hypertensive rat, the alterations of Na-pump activity that slightly increased in weak stimulation and inhibited in strong stimulation, may be related to increased molecular activity and the decrease in the number of low affinity site without change in high affinity site, (2) in the aged erythrocyte of normotensive rat, inhibited Na-pump may be related to the change in molecular activity of pump. (3) And in the aged erythrocyte of hypertensive rat, it may be related to the decrease in the number of high and low affinity site as well as the change in molecular activity

  • PDF

Intein-mediated expression of Trichoderma reesei Cellobiohydrolase I Cellulose Binding Domain in E. coli (Intein을 이용한 대장균에서의 Trichoderma reesei 유래의 Cellobiohydrolase I 섬유소 결합 도메인의 발현)

  • Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.36
    • /
    • pp.33-37
    • /
    • 2016
  • Cellulose binding domains (CBDs) of cellulases are thought to assist in the hydrolysis of insoluble crystalline cellulose. To gain sufficient amount of CBDs, the self-cleavable intein tag was used for expression and purification of Trichoderma reesei cellobiohydrolase I CBD in E. coli. Synthetic CBD genes, CBD or linker-CBD were cloned into expression vector pTYB11. Recombinant CBDs were successfully purified by intein mediated purification with an affinity chitin-binding domain. The final yields of recombinant CBD and linker-CBD were 3.2 mg/L and 1.4 mg/L, respectively. The functional bindings of recombinant CBDs were confirmed by Avicel binding experiments. The simple and easy purification method using self-cleavable intein tag can be further used in pretreatment of crystalline cellulose or characterization of engineered CBDs.

  • PDF

HBV Polymerase Residues $Asp^{429}$ and $Asp^{551}$, Invariant at Motifs A and C are Essential to DNA Binding

  • Kim, Youn-Hee;Hong, Young-Bin;Jung, Gu-Hung
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.498-502
    • /
    • 1998
  • HBV polymerase shares several regions of amino acid homology with other DNA-directed and RNA-directed polymerases. The amino acid residues $Asp^{429}$, $Gly^{518}$, $Asp^{551}$, $Lys^{585}$, and $Gly^{641}$ in the conserved motifs A, B', C, D, and E in the polymerase domain of HBV polymerase were mutated to alanine or histidine by in vitro site-directed mutagenesis. Those mutants were overexpressed, purified, and analyzed against DNA-dependent DNA polymerase activity and affinity for DNA binding. All those mutants did not show DNA-dependent DNA polymerase activities indicating that those five amino acid residues are all critical in DNA polymerase activity. South-Western analysis shows that amino acid residues $ASp^{429}$ and $ASp^{551}$ are essential to DNA binding, and $Gly^{318}$ and $Gly^{585}$ also affect DNA binding to a certain extent.

  • PDF

Expression of an Angiogenin Binding Peptide and Its Anti-Angiogenic Activity

  • Choi, Suk-Jung;Ahn, Mi-Won;Yoon, Kyoung-Bum;Park, Jong-Won
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.427-431
    • /
    • 1998
  • In the previous report (Choi et al., 1997), the angiogenin binding peptides identified from a phage-peptide library were analyzed by using the fusion proteins composed of the Escherichia coli maltose binding protein and its corresponding peptides. However, it was difficult to obtain a sufficient amount of the fusion proteins required for further analysis because of the low expression level. We now report a high level expression of the fusion protein and analysis of its anti-angiogenin activity. The use of strong T7 promoter and removal of signal sequence allowed about a 20-fold increase in the expression efficiency of the fusion protein. We were able to obtain about 10 mg of purified fusion protein from one liter of culture. The purified fusion protein showed angiogenin-specific affinity and inhibited the binding of biotinylated actin to human angiogenin at $IC_{50}$ of 0.6 mM. Its anti-angiogenin activity was also revealed by the chorioallantoic membrane assay.

  • PDF