• 제목/요약/키워드: aerospace materials

검색결과 1,090건 처리시간 0.024초

FSI(Fluid-Structure Interaction) Analysis for Harmonious Operation of High-Speed Printing Machine

  • Kim, Jin-Ho;Lee, Jae-Woo;Park, Soo-Hyung;Byun, Do-Young;Byun, Yung-Hwan;Lee, Chang-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제9권1호
    • /
    • pp.137-146
    • /
    • 2008
  • Proper amount of entrained air and nip force should be also considered to minimize ballooning phenomenon since tight contact between a roller and web is required. In this paper, various web materials, PET(Polyester) and OPP(Oriented Poly Propylene) have been selected and investigated to satisfy high-speed printing requirement. Several web speeds, web tensions, and temperature conditions are imposed on each web materials and the pressure and gap profiles as well as nip force have been calculated. Increase of both the winding roller radius and the incoming wrap angle is considered under proper taper tension at 500 m/min of rewinding roller. By solving coupled Reynolds equation and web deflection equation simultaneously, the fluid-structure interaction process has been developed and is applied to the rewinding roller to investigate the ballooning phenomenon which causes guiding problems in high-speed printing performance conditions. By adjusting the linear taper tension, stress distribution between rewinding webs can be remarkably reduced and stable pressure and gap profile with ignorable ballooning phenomenon have been found.

Numerical vibration correlation technique analyses for composite cylinder under compression and internal pressure

  • Do-Young Kim;Chang-Hoon Sim;Jae-Sang Park;Joon-Tae Yoo;Young-Ha Yoon;Keejoo Lee
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.419-429
    • /
    • 2023
  • This study conducts numerical analyses of a thin-walled composite cylinder under axial compression and internal pressure of 10 kPa. Numerical vibration correlation technique and nonlinear postbuckling analyses are conducted using the nonlinear finite element analysis program, ABAQUS. The single perturbation load approach and measured imperfection data are used to represent the geometric initial imperfection of thin-walled composite cylinder. The buckling knockdown factors are derived using present initial imperfection and analysis methods under axial compression without and with the internal pressure. Furthermore, the buckling knockdown factors are compared with the buckling test and computation time are calculated. In this study, derived buckling knockdown factors in present study have difference within 10% as compared with the buckling test. It is shown that nonlinear postbuckling analysis can derive relatively accurate buckling knockdown factor of present thin-walled cylinders, however, numerical vibration correlation technique derives reasonable buckling knockdown factors compared with buckling test. Therefore, this study shows that numerical vibration correlation technique can also be considered as an effective numerical method with 21~91% reduced computation time than nonlinear postbuckling analysis for the derivation of buckling knockdown factors of present composite cylinders.

고에너지 전자빔 투사방법으로 제조된 Zr계 비정질 합금 표면복합재료의 탄도충격 성능 (Ballistic Properties of Zr-based Amorphous Alloy Surface Composites Fabricated by High-Energy Electron-Beam Irradiation)

  • 도정현;전창우;남덕현;김충년;송영범;이성학
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1047-1055
    • /
    • 2010
  • The objective of this study is to investigate the ballistic properties of Zr-based amorphous alloy surface composites fabricated by high-energy electron-beam irradiation. The mixture of Zr-based amorphous powders and $LiF+MgF_2$ flux powders was deposited on a pure Ti substrate, and then an electron beam irradiated this powder mixture to fabricate a one-layer surface composite. A four-layer surface composite, in which the composite layer thickness was larger than 3 mm, was also fabricated by irradiating the deposited powder mixture by an electron beam three times on the one-layer surface composite. The microstructural analysis results indicated that a small amount of fine crystalline particles were homogeneously distributed in the amorphous matrix of the surface composite layer. According to the ballistic impact test results, the surface composite layers effectively blocked a fast traveling projectile, while many cracks were formed at the composite layers, and thus the surface composite plates were not perforated. The surface composite layer containing ductile ${\beta}$ dendritic phases showed a better ballistic performance than the one without dendrites because dendritic phases hindered the propagation of shear bands or cracks.

이종재료의 결합방법에 따른 모자형 단면부재의 충돌실험 (Crushing Test of the Double Hat-shaped Members of Dissimilar Materials by Seining Methods)

  • 이명한;박영배;김헌영;오수익
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.129-134
    • /
    • 2005
  • There is a strong industrial demand for the development of light-weight vehicle to improve fuel efficiency and dynamic performance. The effective method of achieving the weight reduction is to use low-density materials such as aluminum and magnesium. In applying these materials to the vehicle, it is often required to join dissimilar materials such as aluminum and steel. However, conventional joining method, namely resistance spot welding cannot be used in joining dissimilar materials. Self·piercing rivet(SPR) and adhesive bonding is a good alternative to resistance spot welding. In this study, the impact test of double hat-shaped member made by resistance spot welding, SPR and adhesive bonding was performed. As a result, various parameters of crashworthiness were analyzed and evaluated. Also, the applicability of SPR and adhesive bonding as an alternative to resistance spot welding was suggested.

Delamination growth analysis in composite laminates subjected to low velocity impact

  • Kharazan, Masoud;Sadr, M.H.;Kiani, Morteza
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.387-403
    • /
    • 2014
  • This paper presents a high accuracy Finite Element approach for delamination modelling in laminated composite structures. This approach uses multi-layered shell element and cohesive zone modelling to handle the mechanical properties and damages characteristics of a laminated composite plate under low velocity impact. Both intralaminar and interlaminar failure modes, which are usually observed in laminated composite materials under impact loading, were addressed. The detail of modelling, energy absorption mechanisms, and comparison of simulation results with experimental test data were discussed in detail. The presented approach was applied for various models and simulation time was found remarkably inexpensive. In addition, the results were found to be in good agreement with the corresponding results of experimental data. Considering simulation time and results accuracy, this approach addresses an efficient technique for delamination modelling, and it could be followed by other researchers for damage analysis of laminated composite material structures subjected to dynamic impact loading.

풍력블레이드의 패브릭 스킨재료 물성 시험방법에 대한 고찰 (Review of Test Methods for Fabric Skin Properties of Fabric-Covered Wind Turbine Blade)

  • 조형순;배재성;이수용
    • 항공우주시스템공학회지
    • /
    • 제9권3호
    • /
    • pp.31-38
    • /
    • 2015
  • Wind Turbines are becoming larger in size in order to improve economic efficiency through cost reduction, such as the construction of growth and power infrastructure of energy efficiency. It have requested the large-scale blade design and production. In the present study the new manufacture technique called a fabric-blade structure using spar, rib, and fabric membrane skin is introduced. The architectural membrane test method has been studied to be applied to the skin of the blade. The density and one-axis tensile tests of the architectural membrane materials are conducted to confirm the physical properties which are necessary to the structural designs and analyses of the wind turbine blade.

The Effect of Single Wall Carbon Nanotubes on the Dipole Orientation and Piezoelectric Properties of Polymeric Nanocomposites

  • Kang, Jin-Ho;Park, Cheol;Gaik Steven J.;Lowther Sharon E.;Harrison Joycelyn S.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.245-245
    • /
    • 2006
  • Recent studies of single wall carbon nanotube (SWNT)/polyimide nanocomposites indicate that these materials have a potential to provide the combination of structural integrity and sensing/actuation capability. This study shows the effect of the SWNT type and concentration on the dipole orientation and piezoelectric properties of the electroactive polymide nanocomposites using a thermally stimulated current (TSC) spectroscopy. These nanocomposites exhibit very thermally stable piezoelectric properties up to $150^{\circ}C$. This presentation will highlight the dipole orientation and electroactive characteristics of the SWNT/polyimide nanocomposites and discuss their potential multifunctional aerospace applications.

  • PDF

EFFECT OF ALUMINIDE-YTTRIUM COMPOSITE COATING ON THE OXIDATION RESISTANCE OF TiAl ALLOY

  • Jung, Hwan-Gyo;Kim, Jong-Phil;Kim, Kyoo-Young
    • 한국표면공학회지
    • /
    • 제29권6호
    • /
    • pp.607-614
    • /
    • 1996
  • Yttrium(Y) coating was incorporated by ion-plating method either directly on the TiAl substrate or after pack aluminizing on TiAl to improve the oxidation resistance of TiAl alloy. After Y-coating, heat treatment at low oxygen partial pressure was carried out. Performance of various coating was evaluated by isothermal and cyclic oxidation tests. A simple Y-coating without pack aluminizing can give a detrimental effect on the. oxidation resistance of TiAl alloy, because it enhances formation of $TiO_2$. On the other hand, a composite coating of aluminide-yttrium has shown excellent oxidation resistance. A continuous protective $Al_2O_3$ scale is formed on the aluminized TiAl, and Y-coating improves $Al_2O_3$ scale adherence and substantially prevents depletion of Al in the aluminide-coating layer.

  • PDF

산화 그래핀을 이용한 구리이온 흡착과 투과도 특성을 이용한 구리이온 농도 실시간 측정 (Cu Ions Removal Using Graphene Oxide and in-situ Spectroscopic Monitoring Method of Residual Cu Ions)

  • 김승두;류희중;오훈정;황완식
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.87-91
    • /
    • 2021
  • Various Cu ions are discharged into water from various industries, which results in a severe trouble for groundwater, soil, air, and eventually animals and humans. In this work, graphene oxide (GO) is introduced as a Cu removal absorber and the real-time monitoring method is demonstrated. The results show that GO is a very effective material to absorb Cu ions in the solution. In addition, the residual Cu ions in the solution is monitored via optical transmittance method, which well match with Inductively Coupled Plasma Mass Spectrometer (ICP-MS) analysis.

중소형 무인기 브레이크 시스템용 복합형 지능재료펌프 설계 (Design of the Compound Smart Material Pump for Brake System of Small·Medium Size UAV)

  • 이종훈;황재혁;양지연;주용휘;배재성;권준용
    • 항공우주시스템공학회지
    • /
    • 제9권3호
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, the design of compound smart materials hydraulic pump that can be applied to a small-medium size UAV having a limited space envelope and weight has been conducted. Compound Smart Material Pump(CSMP) proposed in this paper is composed of a pressurize pump and a flow pump for supplying the high pressure and fluid displacement to overcome the disadvantages of the piezoelectric actuator which has a small strain. Though this compound smart material pump has been designed as small size and lightweight as possible, it can sequentially supply the sufficient large flow rate and pressure required for the brake operation. For the design of CSMP, about 2,700 kg (6,000 lb) class fixed wing manned aircraft was selected. Based on the established requirements, the design of the CSMP have been done by strength, vibration, and fluid flow analysis.