• Title/Summary/Keyword: aerospace industry

Search Result 2,111, Processing Time 0.028 seconds

Space Development and Law in Asia (아시아의 우주개발과 우주법)

  • Cho, Hong-Je
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.2
    • /
    • pp.349-384
    • /
    • 2013
  • The Sputnik 1 launching in 1957 made the world recognize the necessity of international regulations on space development and activities in outer space. The United Nations established COPUOS the very next year, and adopted the mandate to examine legal issues concerning the peaceful uses of outer space. At the time, the military sector of the U.S.A. and the Soviet Union were in charge of the space development and they were not welcomed to discuss the prohibition of the military uses of outer space at the legal section in the COPUOS. Although both countries had common interests in securing the freedom of military uses in outer space. As the social and economic benefits derived from space activities have become more apparent, civil expenditures on space activities have continued to increase in several countries. Virtually all new spacefaring states explicitly place a priority on space-based applications to support social and economic development. Such space applications as satellite navigation and Earth imaging are core elements of almost every existing civil space program. Likewise, Moon exploration continues to be a priority for such established spacefaring states as China, Russia, India, and Japan. Recently, Companies that manufacture satellites and ground equipment have also seen significant growth. On 25 February 2012 China successfully launched the eleventh satellite for its indigenous global navigation and positioning satellite system, Beidou. Civil space activities began to grow in China when they were allocated to the China Great Wall Industry Corporation in 1986. China Aerospace Corporation was established in 1993, followed by the development of the China National Space Administration. In Japan civil space was initially coordinated by the National Space Activities Council formed in 1960. Most of the work was performed by the Institute of Space and Aeronautical Science of the University of Tokyo, the National Aerospace Laboratory, and, most importantly, the National Space Development Agency. In 2003 all this work was assumed by the Japanese Aerospace Exploration Agency(JAXA). Japan eases restrictions on military space development. On 20 June 2012 Japan passed the Partial Revision of the Cabinet Establishment Act, which restructured the authority to regulate Japanese space policy and budget, including the governance of the JAXA. Under this legislation, the Space Activities Commission of the Ministry of Education, Culture, Sports, Science, and Technology, which was responsible for the development of Japanese space program, will be abolished. Regulation of space policy and budget will be handed over to the Space Strategy Headquarter formed under the Prime Minister's Cabinet. Space Strategy will be supported by a Consultative Policy Commission as an academics and independent observers. By revoking Article 4 (Objectives of the Agency) of a law that previously governed JAXA and mandated the development of space programs for "peaceful purposes only," the new legislation demonstrates consistency with Article 2 of the 2008 Basic Space Law. In conformity with the principles laid down in the 1967 Outer Space Treaty JAXA is now free to pursue the non-aggressive military use of space. New legislation is the culmination of a decade-long process that sought ways to "leverage Japan's space development programs and technologies for security purposes, to bolster the nation's defenses in the face of increased tensions in East Asia." In this connection it would also be very important and necessary to create an Asian Space Agency(ASA) for strengthening cooperation within the Asian space community towards joint undertakings.

  • PDF

Study on forming Process of Piston Crown Using Near Net Shaping Technology (재료이용율 향상을 위한 피스톤 크라운 성형공정 연구)

  • Choi, H.J.;Choi, S.;Yoon, D.J.;Jung, H.S.;Choi, I.J.;Baek, D.K.;Choi, S.K.;Park, Y.B.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.197-198
    • /
    • 2008
  • The forging process produces complicated and designed components in a die at high productivity for mass production and minimizes the machining amount for favorable material utilization; the forging products used at highly stressed sections are well accepted at a wide range of industry such as automobile, aerospace, electric appliance and et cetera. Accordingly, recent R&D activities have been emphasized on improvement of forging die-life and near net shaping technology for cost effectiveness and better performance. Usually closing and consolidation of internal void defects in a ingot is a vital matter when utilized as large forged products. It is important to develop cogging process for improvement of internal soundness without a void defect and cost reduction by solid forging alone with limited press capacity. For experiments of cogging process, hydraulic press with a capacity of 800 ton was used together with a small manipulator which was made for rotation and overlapping of a billet. Size of a void was categorized into two types; ${\phi}$ 6.0 mm and ${\phi}$ 9.0 mm to investigate the change of closing and consolidation of void defects existed in the large ingot during the cogging process. In addition for forming experiment of piston grown air drop hammer with a capacity of 16 ton was used. The experiment with piston crown was carried out to show the formability and void closing status. In this paper systematic configuration for closing process of void defects were expressed based on this experiment results in the cogging process. Also forging defects through forming process for piston crown was improved using the experiment results and FE analysis. Consequently this paper deals with the effect of radial parameters in cogging process on a void closure far large forged products and formability of piston crown.

  • PDF

Graphitization of PAN-based carbon fibers by CO2 laser irradiation

  • Yao, Liangbo;Yang, Weimin;Li, Sanyang;Sha, Yang;Tan, Jing;An, Ying;Li, Haoyi
    • Carbon letters
    • /
    • v.24
    • /
    • pp.97-102
    • /
    • 2017
  • Graphite fibers are materials with a high specific modulus that have attracted much interest in the aerospace industry, but their high manufacturing cost and low yield are still problems that prevent their wide applications in practice. This paper presents a laser-based process for graphitization of carbon fiber (CF) and explores the effect of laser radiation on the microstructure of CF. The obtained Raman spectra indicate that the outer surface of CF evolves from turbostratic structures into a three-dimensional ordered state after being irradiated by a laser. The X-ray diffraction data revealed that the growth of crystallite was parallel to the fiber axis, and the interlayer spacing $d_{002}$ decreased from 0.353 to 0.345 nm. The results of scanning electron microscopy revealed that the surface of irradiated CFs was rougher than that of the unirradiated ones and there were scale-like small fragments that had peeled off from the fibers. The tensile modulus increased by 17.51% and the Weibull average tensile strength decreased by 30.53% after being irradiated by a laser. These results demonstrate that the laser irradiation was able to increase the graphitization degree of the CFs, which showed some properties comparable to graphite fibers.

The Genetic Algorithm using Variable Chromosome with Chromosome Attachment for decision making model (의사결정 모델을 위한 염색체 비분리를 적용한 가변 염색체 유전 알고리즘)

  • Park, Kang-Moon;Shin, Suk-Hoon;Chi, Sung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • The Genetic Algorithm(GA) is a global search algorithm based on biological genetics. It is widely used in various fields such as industrial applications, artificial neural networks, web applications and defense industry. However, conventional Genetic Algorithm has difficulty maintaining feasibility in complicated situations due to its fixed number of chromosomes. This study proposes the Genetic Algorithm using variable chromosome with chromosome attachment. And in order to verify the implication of changing number of chromosomes in the simulation, it applies the Genetic Algorithm using variable chromosome with chromosome attachment to antisubmarine High Value Unit(HVU) escort mission simulation. As a result, the Genetic Algorithm using variable chromosome has produced complex strategies faster than the conventional method, indicating the increase of the number of chromosome during the process.

Electromagnetic Interference Shielding Effectiveness of a Corrugated Rectangular Waveguide for an Open-Type Microwave Conveyor-Belt Dryer (개방형 마이크로파 컨베이어 벨트 건조기의 요철 직사각형 도파관 차폐효과)

  • Kim, Sung-Yeon;Bae, Sang-Hyeon;Lee, Wang-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • We herein analyze and study the shielding effectiveness characteristic of an open conveyor-belt-type microwave dryer that is widely used in industry. In particular, the electromagnetic wave leakage problem of the open-type conveyor belt dryer using a general-purpose 2.45-GHz magnetron was improved by applying the corrugated rectangular waveguide. We conducted the electromagnetic simulation of the optimal shielding effectiveness characteristic with regard to the proposed waveguide structure to analyze the attenuation characteristics of the corrugated rectangular waveguide. To verify the shielding effectiveness characteristic of the fabricated corrugated rectangular waveguide by IEEE standard 299, we achieved the shielding effectiveness of more than 30 dB in the practical microwave dryer with the proposed corrugated rectangular waveguide.

Survey of Brassiere Related Clothing Tendency for Mastectomy Patients (유방절제 환자의 브래지어 착용 관련 의생활 분석연구)

  • Kim, Youn Joo;Koo, Da Som;Nam, Yun Ja;Seo, Kwan Sik;Lee, Eun Shin;Noh, Dong Young;Cho, Kyu Jin
    • Fashion & Textile Research Journal
    • /
    • v.21 no.6
    • /
    • pp.800-812
    • /
    • 2019
  • Secondary diseases that occur during the rehabilitation of breast cancer survivors are factors that can negatively change the physical and psychological state of the patient. The rehabilitation after treatment of breast cancer survivors is an important process to prevent cancer recurrence and increase the survival rate because a negative psychological state significantly impacts the long-term survival rate. This study identifies user requirements for the development of functional bras for mastectomy patients in Korea. Participants included 133 patients with one or more breasts removed due to breast cancer and an average age of 53.2 years (53.21 ± 7.57 years, minimum 33 years, maximum 69 years). Women in their 50s had the highest participation rate of 48.9%. Most maintained the same bra size before surgery; however, some experienced changes in bra size because they are not irritated by wounds caused by surgery. Therefore, it is important to pay attention to material when designing a functional bra because it can irritate the surgical site. Only about 41.4% of bras were worn by breast cancer patients because of price burden and lack of education, not complaints related to clothing design and wearability or body shape. Most purchases at hospitals or medical institutions require consultation with a specialist who provides information about a bra mainly at the hospital. The most important considerations when buying a breast cancer bra were size, fit and shape stability.

Fatigue Characteristics and FEM Analysis of $18\%$Ni(200) Maraging Steel (18Ni 마르에이징강의 피로특성 및 유한요소해석)

  • Choi Byung Ki;Jang Kyeung Cheun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2005
  • Recently the needs of high reliable substances of high strength and high ductility are gradually increased with the development of aerospace industry. The characteristics of maraging steel has high ductililty, formability, corrosion resistant and high temperature strength and is easy to fabricate, weld and treat with heat, and maintain an invariable size even after heat treatment. e steels are furnished in the solution annealed condition and they achieve full properties through martensitic precipitation aging a relatively simple, low temperature heat treatment. As is true of the heat treating procedures, aging is a time/temperature dependent reaction. Therefore, the objective of this stud)'was consideration of fatigue characteristics according as Nb(niobium) content and time/temperature of heat treatment change. Also the stress analysis, fatigue lift, and stress intensity factor were compared with experiment results and FEA(finite element analysis) result. The maximum ftresses of)( Y, and Z axis direction showed about $2.12\times$10$^{2}$MPa, $4.40\times$10$^{2}$MPa and $1.32\times$10$^{2}$MPa respectively. The fatigue lives showed about $7\%$ lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about $3.5~ 10\%$ than that of the experiment result showing that the longer fatigue crack ten添 the hi인or error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

A Trend of Policy for Remotely Piloted Aircraft System Panel in International Civil Aviation Organization (국제민간항공기구의 무인기 정책 개발 동향)

  • Ahn, Hyojung;Won, Jungyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.2
    • /
    • pp.117-122
    • /
    • 2016
  • Ecumenically, RPAS(Remotely Piloted Aircraft System) operation has been increased and the related accidents also have occurred. Accordingly, national authorities, organizations and industry have been striving for amendment and enactment of policy and regulation related to the RPAS(Remotely Piloted Aircraft System) operation. And ICAO had performed the joint study to make international standards through UASSG(Unmanned Aerial System Study Group). Recently this group has been switched to the panel meeting, RPASP(Remotely Piloted Aircraft System Panel). It has been discussed to make the related annex, SARPs(Standards and Recommended Practices) and etc. in RPASP. In this paper, we investigated the trend of study and development for ICAO RPAS policy and regulation. Based on these results, we suggested considerations to prepare domestic policy and regulations.

Defect Detection of Impacted Composite Tubes by Lock-in Photo-Infrared Thermography Technique (위상잠금 열화상기법을 이용한 복합재 튜브 충격 손상 결함 측정)

  • Kim, Kyoung-Suk;Jeon, So-Young;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.139-143
    • /
    • 2011
  • The problem of delamination of composite tubes by impact has been acknowledged in aerospace and automobile industry. Non-destructive testing(NDT) methods in composite material structure are important to evaluate reliability of composite structure. There are many kinds of NDT methods which can detect the inside defect of the composite material such as Infrared Thermography(IRT). Infrared thermal imaging of object is different from that of a defect, in heated composite tubes with an internal defect, and then location and size of a defect can be measured by the analysis of thermal imaging pattern. In this study, Lock-in Infrared thermography detect internal defects of Impacted composite tubes by the inspection of infrared lay radiated from the surface of composite tubes.

A Study on Filament Winding Process of A CNG Composite Pressure vessel (CNG 복합용기의 필라멘트 와인딩 공정에 관한 연구)

  • Kim, C.;Kim, E. S.;Kim, J. H.;Choi, J. C.;Park, Y. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.656-660
    • /
    • 2002
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. Pressure vessels using this composite material in comparison with conventional metal vessels can be applied in the field where lightweight and the high pressure is demanded from the defense and aerospace industry to rocket motor case due to the merits which are energy curtailment by the weight reduction and decrease of explosive damage precede to the sudden explosion which is generated by the pressure leakage condition. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding composite pressure vessel receiving an internal pressure, the standard interpretation model is developed by using the ANSYS 5.7.1, the general commercial program, which is verified as the accuracy and useful characteristic of the solution based on Auto LISP and ANSYS APDL. Both the preprocessor for doing exclusive analysis of filament winding composite pressure vessel and postprocessor that simplifies result of analysis have been developed to help the design engineers.

  • PDF