• Title/Summary/Keyword: aerosol generation

Search Result 85, Processing Time 0.02 seconds

Experimental study on the Formation and Growth of Silica Particles in $H_2/O_2$ Diffusion Flame by Electro-Spraying Method and Evaporation ($H_2/O_2$확산화염에서 전기수력학적 방법과 증발기에 의해 발생된 입자의 성장 비교에 관한 실험적 연구)

  • Sohn, S.H.;Yook, S.J.;Ah, K.H.;Choi, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.168-173
    • /
    • 2000
  • Flame aerosol synthesis technology refers to the formation of fine particles from gases in flame and is widely used in practical materials processing. In this paper, an experimental investigation was performed on growth of the silica particles that were generated in $H_2/O_2$ Diffusion Flame by the direct injection or TEOS using Electro-spraying method. in this flame aerosol synthesis, four main parameters or nos interaction (flame temperature, residence time or particle in flame, TEOS flow rate, applied voltage) for particle generation and growth was investigated along the axial direction above the burner. A fairly monodisperse non-aggregated particles were successfully obtained.

  • PDF

Particle deposition on a semiconductor wafer larger than 100 mm with electrostatic effect (정전효과가 있는 100mm보다 큰 반도체 웨이퍼로의 입자침착)

  • Song, Gen-Soo;Yoo, Kyung-Hoon;Lee, Kun-Hyung
    • Particle and aerosol research
    • /
    • v.5 no.1
    • /
    • pp.17-27
    • /
    • 2009
  • Particle deposition on a semiconductor wafer larger than 100 mm was studied experimentally and numerically. Particularly the electrostatic effect on particle deposition velocity was investigated. The experimental apparatus consisted of a particle generation system, a particle deposition chamber and a wafer surface scanner. Experimental data of particle deposition velocity were obtained for a semiconductor wafer of 200 mm diameter with the applied voltage of 5,000 V and PSL particles of the sizes between 83 and 495 nm. The experimental data of particle deposition velocity were compared with the present numerical results and the existing experimental data for a 100 mm wafer by Ye et al. (1991) and Opiolka et al. (1994). The present numerical method took into consideration the particle transport mechanisms of convection, Brownian diffusion, gravitational settling and electrostatic attraction in an Eulerian frame of reference. Based on the comparison of the present experimental and numerical results with the existing experimental results the present experimental method for a 200 mm semiconductor wafer was found to be able to present reasonable data.

  • PDF

Preparation of Nanoparticles by Gas Phase Processes (기상 공정에 의한 나노 미립자 제조)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.536-546
    • /
    • 2007
  • The nanoparticles have several interesting properties which cannot be shown in their bulk materials because of their high ratio of surface area to volume. They can be used to manufacture the nanostructured materials, the industrial materials, or the catalyst materials etc.. We can prepare nanoparticles of various sizes with high degree of monodispersity by gas phase processes and those particles can be used as raw materials for various advanced functional materials. In this paper, we introduced the aerosol reactors to synthesize nanoparticles by gas phase processes and also analyzed several features of those aerosol reactors and tried to introduce the recent interesting studies on nanoparticle synthesis by gas phase processes.

Retrieval and Validation of Aerosol Optical Properties Using Japanese Next Generation Meteorological Satellite, Himawari-8 (일본 정지궤도 기상위성 Himawari-8을 이용한 에어로졸 광학정보 산출 및 검증)

  • Lim, Hyunkwang;Choi, Myungje;Kim, Mijin;Kim, Jhoon;Chan, P.W.
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.681-691
    • /
    • 2016
  • Using various satellite measurements in UV, visible and IR, diverse algorithms to retrieve aerosol information have been developed and operated to date. Advanced Himawari Imager (AHI) onboard the Himawari 8 weather satellite was launched in 2014 and has 16 channels from visible to Thermal InfRared (TIR) in high temporal and spatial resolution. Using AHI, it is very valuable to retrieve aerosol optical properties over dark surface to demonstrate its capability. To retrieve aerosol optical properties using visible and Near InfRared (NIR) region, surface signal is very important to be removed which can be estimated using minimum reflectivity method. The estimated surface reflectance is then used to retrieve the aerosol optical properties through the inversion process. In this study, we retrieve the aerosol optical properties over dark surface, but not over bright surface such as clouds, desert and so on. Therefore, the bright surface was detected and masked using various infrared channels of AHI and spatial heterogeneity, Brightness Temperature Difference (BTD), etc. The retrieval result shows the correlation coefficient of 0.7 against AERONET, and the within the Expected Error (EE) of 49%. It is accurately retrieved even for low Aerosol Optical Depth (AOD). However, AOD tends to be underestimated over the Beijing Hefei area, where the surface reflectance using the minimum reflectance method is overestimated than the actual surface reflectance.

Physical Characteristics of Aerosol Concentrations Observed in an Urban Area, Busan (부산 도심지에서 측정된 에어로졸 농도의 물리적 특성)

  • Kim, Yun-Jong;Kim, Cheol-Hee
    • Journal of Environmental Science International
    • /
    • v.19 no.3
    • /
    • pp.331-342
    • /
    • 2010
  • Aerosol physical properties have been measured at Pusan National University by using the 16-channel LPC(Laser Particle Counter), and particle characteristics have been examined for the period from Aug. 4 2007 to Dec. 30, 2008. Annual total average, seasonal average, and other averages of the meteorologically classified four categories such as Asian dust, precipitation, foggy, and clear days are respectively described here. Both annually and seasonally averaged number concentration show three peaks at the particle diameter of 0.3, 1.3, and $4{\mu}m$, respectively. However, the first peak for summer season tends to be shifted toward smaller size than other seasons, implying the strong fine particle generation. Meteorological condition shows strong contrast in aerosol concentrations. In Asian dust case, relatively lower number concentrations of fine particles (i.e., smaller than $0.5{\mu}m$) were predominant, while higher concentrations of coarse particles were found particularly for the size bigger than $0.5{\mu}m$. In precipitation day, number concentrations were decreased by approximately 30% due to the removal process of precipitation. Foggy day shows significantly higher concentrations for fine particles, implying the importance of the aerosol condensation process of micro-fine-particle growing to fine-particle. Finally the regressed particle size distribution function was fitted optimally with two log-normal distribution, and discussed the similarities and differences among four categorized cases of the Asian dust, precipitation, foggy, and clear days.

Attachment Behavior of Fission Products to Solution Aerosol

  • Takamiya, Koichi;Tanaka, Toru;Nitta, Shinnosuke;Itosu, Satoshi;Sekimoto, Shun;Oki, Yuichi;Ohtsuki, Tsutomu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.350-353
    • /
    • 2016
  • Background: Various characteristics such as size distribution, chemical component and radio-activity have been analyzed for radioactive aerosols released from Fukushima Daiichi Nuclear Power Plant. Measured results for radioactive aerosols suggest that the potential transport medium for radioactive cesium was non-sea-salt sulfate. This result indicates that cesium isotopes would preferentially attach with sulfate compounds. In the present work the attachment behavior of fission products to aqueous solution aerosols of sodium salts has been studied using a generation system of solution aerosols and spontaneous fission source of $^{248}Cm$. Materials and Methods: Attachment ratios of fission products to the solution aerosols were compared among the aerosols generated by different solutions of sodium salt. Results and Discussion: A significant difference according as a solute of solution aerosols was found in the attachment behavior. Conclusion: The present results suggest the existence of chemical effects in the attachment behavior of fission products to solution aerosols.

Room temperature-processed TiO2 coated photoelectrodes for dye-sensitized solar cells

  • Kim, Dae-gun;Lee, Kyung-min;Lee, Hyung-bok;Lim, Jong-woo;Park, Jae-hyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.2
    • /
    • pp.61-65
    • /
    • 2020
  • The depletion of fossil fuels and the increase in environmental awareness have led to greater interest in renewable energy. In particular, solar cells have attracted attention because they can convert an infinite amount of solar energy into electricity. Dye-sensitize solar cells (DSSCs) are low cost third generation solar cells that can be manufactured using environmentally friendly materials. However, DSSC photoelectrodes are generally produced by screen printing, which requires high temperature heat treatment, and low temperature processes that can be used to produce flexible DSSCs are limited. To overcome these temperature limitations, this study fabricated photoelectrodes using room-temperature aerosol deposition. The resulting DSSCs had an energy conversion efficiency of 4.07 %. This shows that it is possible to produce DSSCs and flexible devices using room-temperature processes.

Atomization Characteristics of Cutting Fluids (절삭유의 미립화 특성)

  • Hwang, Joon;Chung, Eui-Sik;Joung, Jin-Yel;Hwang, Duck-Chul
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.943-946
    • /
    • 2002
  • This paper presents atomization characteristics of cutting fluids. To analyze the behavior characteristics of cutting fluid, analytical approach and experimental measurement were performed to predict the aerosol size, velocity and concentration due to cutting fluid atomization mechanism in machining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

A Strategic Approach for Environmental Conscious Machining (환경친화적 기계가공을 위한 전략적 접근)

  • Hwang, Joon;Chung, Eui-Sik;Liang, Steve Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.847-850
    • /
    • 1997
  • This paper presents a strategy to develop the environmentally conscious machining process. To establish the knowledge the analytical and experimental methodology for he prediction of aerosol concentration due to cutting fluid atomization mechanism in machining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The impinging and evaporation experiments were performance to know the particle size ad evaporation rate of cutting fluid. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF

Optimization of Cutting Fluids for Environmentally Conscious Machining (환경친화적 기계가공을 위한 절삭유 최적화에 관한 연구)

  • Hwang, Jun;Jung, Eui-Sik;Liang, Steven Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.948-951
    • /
    • 2000
  • This paper presents the analytical and experimental methodology for the prediction of aerosol concentration and size distribution due to cutting fluid atomization mechanism in turnining operation. The established analytical model which is based on atomization theory analyzes the cutting fluid motion and aerosol generation in machining process. The impinging and evaporation experiments were performed to know the particle size and evaporation rate of cutting fluid. The predictive models can be used as a basis for environmental impact analysis on the shop floor. It can be also facilitate the optimization of cutting fluid usage in achieving a balanced consideration of productivity and environmental consciousness.

  • PDF