• 제목/요약/키워드: aerosol extinction coefficient

검색결과 38건 처리시간 0.027초

Visibility Measurement in an Atmospheric Environment Simulation Chamber

  • Tai, Hongda;Zhuang, Zibo;Jiang, Lihui;Sun, Dongsong
    • Current Optics and Photonics
    • /
    • 제1권3호
    • /
    • pp.186-195
    • /
    • 2017
  • Obtaining accurate visibility measurements is a common atmospheric optical problem, and of vital significance to civil aviation. To effectively evaluate and improve the accuracy of visibility measurements, an outdoor atmospheric simulation chamber with dimensions of $1.8{\times}1.6{\times}55.7m^3$ was constructed. The simulation chamber could provide a relatively homogeneous haze environment, in which the visibility varied from 10 km to 0.2 km over 5 hours. A baseline-changing visibility measurement system was constructed in the chamber. A mobile platform (receiver) was moved from 5 m to 45 m, stopping every 5 m, to measure and record the transmittance. The total least-squares method was used to fit the extinction coefficient. During the experiment conducted in the chamber, the unit weight variance was as low as $1.33{\times}10^{-4}$ under high-visibility conditions, and the coefficient of determination ($R^2$) was as high as 0.99 under low-visibility conditions, indicating high stability and accuracy of the system used to measure the extinction coefficients and strong consistency between repeated measurements. A Grimm portable aerosol spectrometer (PAS) was used to record the aerosol distribution, and then Mie theory was used to calculate the extinction coefficients. The theoretical results were found to be consistent with the measurements and exhibited a positive correlation, although they were higher than the measured values.

IMPROVE 모델에 근거한 대기질의 시각화 (Visualization of Air Quality based on the IMPROVE Models)

  • 김태식
    • 디지털콘텐츠학회 논문지
    • /
    • 제10권2호
    • /
    • pp.299-307
    • /
    • 2009
  • 우리가 일상에서 보고 있는 전경의 기시거리는 대기질의 청정상태와 밀접한 관련이 있는 것으로 알려져 있다. 최근에 이들의 관계를 보다 구체적으로 나타내기 위하여 미국의 IMPROVE 기관에서는 대기의 오염물질 구성 농도에 따른 시정거리를 유추할 수 있는 알고리즘을 개발하였다. 이에 본 논문에서는 대기질의 변화에 따른 대기오염의 상태를 화학물질의 정량적인 표현식으로 나타내는데서 나아가 IMPROVE 모델을 통해 유추된 시정거리를 중심으로 관심지역의 시정영상과 연계함으로 화학적 지식이 없는 일반인들도 오염상태를 시각적으로 실감할 수 있게 대기오염 알림판을 구축할 수 있는 프로그램을 구현하였다.

  • PDF

Development of High Spectral Resolution Lidar System for Measuring Aerosol and Cloud

  • Zhao, Ming;Xie, Chen-Bo;Zhong, Zhi-Qing;Wang, Bang-Xin;Wang, Zhen-Zhu;Dai, Pang-Da;Shang, Zhen;Tan, Min;Liu, Dong;Wang, Ying-Jian
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.695-699
    • /
    • 2015
  • A high spectral resolution lidar (HSRL) system based on injection-seeded Nd:YAG laser and iodine absorption filter has been developed for the quantitative measurement of aerosol and cloud. The laser frequency is stabilized at 80 MHz by a frequency locking system and the absorption line of iodine cell is selected at the 1111 line with 2 GHz width. The observations show that the HSRL can provide vertical profiles of particle extinction coefficient, backscattering coefficient and lidar ratio for cloud and aerosol up to 12 km altitude, simultaneously. For the measured cases, the lidar ratios are 10~20 sr for cloud, 28~37 sr for dust, and 58~70 sr for urban pollution aerosol. It reveals the potential of HSRL to distinguish the type of aerosol and cloud. Time series measurements are given and demonstrate that the HSRL has ability to continuously observe the aerosol and cloud for day and night.

서울시의 1993년 가을 스모그 특성모사 (Modeling of Smog Characteristics in Seoul during the Fall,1993)

  • 백남준;이성준;김용표;문길주;조영일
    • 한국대기환경학회지
    • /
    • 제10권2호
    • /
    • pp.137-145
    • /
    • 1994
  • A visibility analysis model based on the Mie theory is applied to the measurements during the fall, 1993 in Seoul. Model estimations of the total extinction coefficient $b_{ext}$, and the particle scattering coefficient, $b_{sp}$ are in good agreement with the measured values by a transmissometer and a nephelometer, respectively. These values show strong dependency on the mass loading of fine particles( $D_{p}$ <3.0${\mu}{\textrm}{m}$) but show no apparent relation with that of coarse particles(3.0${\mu}{\textrm}{m}$$D^{p}$ <10${\mu}{\textrm}{m}$). Relative humidity plays an important role in determining the size of particles which in turn, affects the optical efficiency of aerosol. Based on the composition analysis with cut size nitrate concentration is higher than the sulfate concentration in PM3-10 but they are comparable to each other in PM3. Considering in 1985, it demonstrates a drastic increase of nitrate concentration between 1985 and 1993. It is found that measured and estimated light extinction budget were in good agreement within 10% and that scattering by particles is responsible for about 50-55% and 70-80 % of total extinction during clear and smoggy periods respectively.y.

  • PDF

공중화분에 의한 시정장애 현상의 물리적 및 화학적 특성 규명 (Physico-Chemical Characteristics of Visibility Impairment by Airborne Pollen)

  • 김경원
    • 한국대기환경학회지
    • /
    • 제22권6호
    • /
    • pp.863-875
    • /
    • 2006
  • Intensive visibility monitoring was conducted to investigate physical and chemical characteristics of visibility impairment by airborne pollen. Light attenuation coefficients were optically measured by a transmissometer, a nephelometer, and an aethalometer. Elemental, ionic, and carbonaceous species were chemically analyzed on the filters collected by $PM_{2.5}$ and $PM_{10}$ samplers. Aerosol size distribution was analyzed using a cascade impactor during airborne pollen period. Airborne pollen count was calculated using a scanning electron microscope. Airborne pollen was emitted into the atmosphere in springtime and funker degraded visibility through its scattering and absorbing the light. Average light extinction coefficient was measured to be $211{\pm}36Mm^{-1}$ when airborne pollen was not observed. But it increased to $459{\pm}267Mm^{-1}$ during the airborne pollen period due to increase of average $PM_{2.5}$ and $PM_{10}$ mass concentration and relative humidity and airborne pollen count concentration for $PM_{10}$, which were measured to be $46.5{\pm}29.1{\mu}g\;m^{-3},\;97.0{\pm}41.7{\mu}g\;m^{-3},\;54.1{\pm}11.6%$, and $68.2{\pm}89.7m^{-3}$, respectively. Average light extinction efficiencies for $PM_{2.5}$ and $PM_{10}$ were calculated to be $5.9{\pm}0.9$ and $4.5{\pm}0.8m^2 g^{-1}$ during the airborne pollen period. Light extinction efficiency for $PM_{10}$ increased further than that for $PM_{2.5}$. The average light extinction budget by airborne pollen was estimated to be about 24% out of the average measured light extinction coefficient during the airborne pollen period.

GIST/ADEMRC 다파장 라만 라이다 시스템을 이용한 안면도 지역에서의 라이다 비 연구 (Determination of the Lidar Ratio Using the GIST / ADEMRC Multi-wavelength Raman Lidar System at Anmyeon Island)

  • 노영민;김영민;김영준;최병철
    • 한국대기환경학회지
    • /
    • 제22권1호
    • /
    • pp.1-14
    • /
    • 2006
  • Tropospheric aerosols are highly variant in time and space due to non-uniform source distribution and strong influence of meteorological conditions. Backscatter lidar measurement is useful to understand vertical distribution of aerosol. However, the backscatter lidar equation is undetermined due to its dependence on the two unknowns, extinction and backscattering coefficient. This dependence necessitates the exact value of the ratio between two parameters, that is, the lidar ratio. Also, Iidar ratio itself is useful optical parameter to understand properties of aerosols. Tropospheric aerosols were observed to understand variance of lidar ratio at Anmyeon island ($36.32^{/circ}N$, $126.19^{/circ}E$), Korea using a multi-wavelength raman lidar system developed by the Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea during measurement periods; March 15$\sim$April $16^{th}$, 2004 and May 24$\sim$ $8^{th}$ 2005. Extinction coefficient, backscattering coefficient, and lidar ratio were measured at 355 and 532 nm by the Raman method. Different types of aerosol layers were distinguished by the differences in the optical properties such as Angstrom exponent, and lidar ratio. The average value of lidar ratio during two observation periods was found to be $50.85\pm4.88$ sr at 355 nm and $52.43\pm15.15$ sr at 532 nm at 2004 and $57.94\pm10.29$ sr at 355 nm and $82.24\pm15.90$ sr at 532 nm at 2005. We conduct hysplit back-trajectory to know the pathway of airmass during the observation periods. We also calculate lidar ratio of different type of aerosol, urban, maritime, dust, continental aerosols using OPAC (Optical Properties of Aerosols and Clouds), Remote sensing of atmospheric aerosol using a multi-wavelengh lidar system with Raman channels is quite and powerful tool to characterize the optical propertises of troposheric aerosols.

Detection of Water Cloud Microphysical Properties Using Multi-scattering Polarization Lidar

  • Xie, Jiaming;Huang, Xingyou;Bu, Lingbing;Zhang, Hengheng;Mustafa, Farhan;Chu, Chenxi
    • Current Optics and Photonics
    • /
    • 제4권3호
    • /
    • pp.174-185
    • /
    • 2020
  • Multiscattering occurs when a laser transmits into dense atmosphere targets (e.g. fogs, smoke or clouds), which can cause depolarization effects even though the scattering particles are spherical. In addition, multiscattering effects have additional information about microphysical properties of scatterers. Thus, multiscattering can be utilized to study the microphysical properties of the liquid water cloud. In this paper, a Monte Carlo method was used to simulate multi-scattering transmission properties of Lidar signals in the cloud. The results showed the slope of the degree of linear polarization (SLDLP) can be used to invert the extinction coefficient, and then the cloud effective size (CES) and the liquid water content (LWC) may be easily obtained by using the extinction coefficient and saturation of the degree of linear polarization (SADLP). Based on calculation results, a microphysical properties inversion method for a liquid cloud was presented. An innovative multiscattering polarization Lidar (MSPL) system was constructed to measure the LWC and CES of the liquid cloud, and a new method based on the polarization splitting ratio of the Polarization Beam Splitter (PBS) was developed to calibrate the polarization channels of MSPL. By analyzing the typical observation data of MSPL observation in the northern suburbs of Nanjing, China, the LWC and CES of the liquid water cloud were obtained. Comparisons between the results from the MSPL, MODIS and the Microwave radar data showed that, the microphysical properties of liquid cloud could be retrieved by combining our MSPL and the inversion method.

서울지역 시간별 에어로솔 자료를 이용한 화학성분별 광학특성 및 직접 복사강제력의 시간 변화 분석 (Temporal Variations in Optical Properties and Direct Radiative Forcing of Different Aerosol Chemical Components in Seoul using Hourly Aerosol Sampling)

  • 송상근;손장호
    • 한국대기환경학회지
    • /
    • 제30권1호
    • /
    • pp.1-17
    • /
    • 2014
  • Temporal variations of optical properties of urban aerosol in Seoul were estimated by the Optical Properties of Aerosols and Clouds (OPAC) model, based on hourly aerosol sampling data in Seoul during the year of 2010. These optical properties were then used to calculate direct radiative forcing during the study period. The optical properties and direct radiative forcing of aerosol were calculated separately for four chemical components such as water-soluble, insoluble, black carbon (BC), and sea-salt aerosols. Overall, the coefficients of absorption, scattering, and extinction, as well as aerosol optical depth (AOD) for water-soluble component predominated over three other aerosol components, except for the absorption coefficient of BC. In the urban environment (Seoul), the contribution of AOD (0.10~0.12) for the sum of OC and BC to total AODs ranged from 23% (spring) to 31% (winter). The diurnal variation of AOD for each component was high in the morning and low in the late afternoon during the most of seasons, but the high AODs at 14:00 and 15:00 LST in summer and fall, respectively. The direct negative radiative forcing of most chemical components (especially, $NO_3{^-}$ of water-soluble) was highest in January and lowest in September. Conversely, the positive radiative forcing of BC was highest in November and lowest in August due to the distribution pattern of BC concentration.

국립공원 지역 시정장애 현상의 물리.화학적 특성 (Physico-Chemical Characteristics of Visibility Impairment in a National Park Area)

  • 김경원
    • 한국대기환경학회지
    • /
    • 제25권4호
    • /
    • pp.325-338
    • /
    • 2009
  • National parks provide recreation, health, and science to human being. The provision of beautiful landscape view of the national park improves an economic and social phase of a nation. However, visibility impairment frequently occurred in the national park area of Gyeongju. The purpose of this study is to investigate the physical and the chemical characteristics of visibility reduction observed at the national park area of Gyeongju. Optical, chemical, meteorological characteristics and scenic monitoring were performed at the visibility monitoring station of Gyeongju University located at the Seoak section of Gyeongju national park from April 28 to May 9, 2008. Light extinction, light scattering, and light absorption coefficients were continuously measured using a transmissometer, a nephelometer, and an aethalometer, respectively. In order to investigate the impact of aerosol chemistry on visibility impairment, size-resolved aerosols were collected at intervals of 2-hour (from 8 A.M. to 6 P.M.) and 14-hour (from 6 P.M. to 8 A.M.) interval each sampling day. The average light extinction coefficient and the average visual range were measured to be $270{\pm}135\;Mm^{-1}$ and $14.5{\pm}6.3\;km$ during the intensive monitoring period, respectively. It was revealed that sulfate particle was the largest contributor to the light extinction under hazy condition. Organic mass accounted for about 26% of the average light extinction. The mass extinction efficiencies for $PM_{1.0}$, $PM_{2.5}$, and $PM_{10}$ were estimated to be 9.0, 4.7, and $2.7\;m^2\;g^{-1}$ under the consideration of water growth function of hygroscopic aerosols, respectively.

천리안 위성 해양탑재체와 위성탑재 라이다 관측자료를 이용한 황사 에어러솔의 3차원 모니터링 (Three Dimensional Monitoring of the Asian Dust by the COMS/GOCI and CALIPSO Satellites Observation Data)

  • 이권호
    • 한국대기환경학회지
    • /
    • 제29권2호
    • /
    • pp.199-210
    • /
    • 2013
  • Detailed 3 dimensional structure of Asian dust plume has been analyzed from the retrieved aerosol data from two different satellites which are the Korea's $1^{st}$ geostationary satellite, namely the Communication, Ocean, Meteorological Satellite (COMS) spacecraft launched in 2010, and the NASA's Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). COMS spacecraft provides the first time resolved aerial aerosol maps by the systematically well-calibrated multispectral measurements from the Geostationary Ocean Color Imager (GOCI) instrument. GOCI data are used here to evaluate intensity, spatial distribution, and long-range transport of Asian dust plume during 1~2 May 2011. We found that the strong Asian dust plume showing AOT of 2~5 was lofted to the altitude around 2~4 km above the Earth's surface and transported over Yellow Sea with a speed of about 25 km/hr. The CALIPSO extinction coefficient and particulate depolarization ratio (PDR) profiles confirmed that nonspherical dust particles were enriched in the dust plume. This study is a first example of quantitative integration of GOCI and CALIOP measurements for clarifying the overall structure of an Asian dust event.