• Title/Summary/Keyword: aerosol composition

Search Result 143, Processing Time 0.029 seconds

Effects of Aerosol Hygroscopicity on Fine Particle Mass Concentration and Light Extinction Coefficient at Seoul and Gosan in Korea

  • Choi, Eun-Kyung;Kim, Yong-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • The sensitivity of aerosol light extinction coefficient to the aerosol chemical composition change is estimated by (1) calculating the aerosol water content and chemical concentrations by a gas/particle equilibrium model and (2) calculating the aerosol light extinction coefficient by a Mie theory based optical model. The major chemical species are total (gas and particle phase) sulfuric acid, total nitric acid, and total ammonia which are based on the measurement data at Seoul and Gosan. At Seoul, since there were enough ammonia to neutralize both total sulfuric acid and total nitric acid, the dry ionic concentration is most sensitive to the variation of the total nitric acid level, while the total mass concentration (ionic concentration plus water content) and thus, the aerosol light extinction coefficient are primarily determined by the total sulfuric acid. At Gosan, since the concentration of ambient sulfuric acid was the highest among the inorganic species, sulfate salts determined aerosol hygroscopicity. Thus, both ionic and total mass concentration, and resultant aerosol light extinction coefficient are primarily determined by the sulfuric acid level.

Characteristics of long-range transported PM2.5 at a coastal city using the single particle aerosol mass spectrometry

  • Cai, Qiuliang;Tong, Lei;Zhang, Jingjing;Zheng, Jie;He, Mengmeng;Lin, Jiamei;Chen, Xiaoqiu;Xiao, Hang
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.690-698
    • /
    • 2019
  • Air pollution has attracted ever-increasing attention because of its substantial influence on air quality and human health. To better understand the characteristics of long-range transported pollution, the single particle chemical composition and size were investigated by the single particle aerosol mass spectrometry in Fuzhou, China from 17th to 22nd January, 2016. The results showed that the haze was mainly caused by the transport of cold air mass under higher wind speed (10 m·s-1) from the Yangtze River Delta region to Fuzhou. The number concentration elevated from 1,000 to 4,500 #·h-1, and the composition of mobile source and secondary aerosol increased from 24.3% to 30.9% and from 16.0% to 22.5%, respectively. Then, the haze was eliminated by the clean air mass from the sea as indicated by a sharp decrease of particle number concentration from 4,500 to 1,000 #·h-1. The composition of secondary aerosol and mobile sources decreased from 29.3% to 23.5% and from 30.9% to 23.1%, respectively. The particles with the size ranging from 0.5 to 1.5 ㎛ were mainly in the accumulation mode. The stationary source, mobile source, and secondary aerosol contributed to over 70% of the potential sources. These results will help to understand the physical and chemical characteristics of long- range transported pollutants.

Aerosol Size Distribution and Composition at Kosan, Cheju Island : Measurements in April 1998 (제주도 고산에서의 에어로솔 입경분포별 조성: 1998년 4월 측정 연구)

  • 김용표;배귀남;지준호;진현철;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.677-685
    • /
    • 1999
  • Aerosol mass size distributions were measured at Kosan, Cheju Island in April 1998 and their compositions were analyzed. Microorifice Uniform Deposit Impactor(MOUDI) was used to collect aerosols. Sulfate and ammonium ions were predominatly present at fine mode of the aerosols while nitrate, chloride, and metal ions were mostly at coarse mode. Based on the size distribution of nitrate, it is suggested that most nitrate were from gas to particle conversion on coarse particles. Non-sea salt(nss) fraction of sulfate accounted for more than 90% of total sulfate mass concentration. In general, ion concentrations in this study are lower than those measured at the same site from the previous studies. Ion balance and chloride ion levels indicates that there had been anthropogenic chloride emission sources near to the site during the measurements.

  • PDF

Study on Size Distribution of Total Aerosol and Water-soluble tons During an Asian Dust Storm Event at Jeju Island (황사기간중 제주지역의 에어로졸과 수용성이온의 크기분포)

  • Park Seong-Hun;Song Chang-Byeong;Kim Min-Cheol;Gwon Sun-Park;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.159-160
    • /
    • 2002
  • Soil dust particles transported from loess regions of the Asian continent, called Asian dust, highly influences the air quality of north-eastern Asia and the northern Pacific Ocean. The effects of these dust storms, on the chemical composition of atmospheric aerosol particles with different size, was investigated. Measurements of size distributions of total aerosol and major ion species were carried out on Jeju Island, Korea. (omitted)

  • PDF

Assessing the Impact of Locally Produced Aerosol on the Rainwater Composition at the Gosan Background Site in East Asia

  • Han, Yeongcheol;Huh, Youngsook
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.69-80
    • /
    • 2014
  • It is often assumed that atmospheric observations at remote sites represent long-range transport of airborne material, and local influences are overlooked. We evaluated the impact of local input on the rainwater composition at Gosan Station, a strategic site for monitoring the continental outflow from Asia. We analyzed a 14-year record of rainwater chemical composition archived by the Korea Meteorological Administration and detected local terrestrial contribution for nitrate, sulfate and ammonium. We also measured the chemical composition of rainwater sampled simultaneously at multiple locations within the premises of the Gosan Station, from which local influence with meter-scale spatial heterogeneity could be discerned. We estimate that the local input accounted for at least ~10% of the wet deposition of nitrogen and ~12% of the wet deposition of sulfur during the 14 years. This highlights the significance of the local influence, which should be carefully assessed when interpreting atmospheric observations at this site.

Characteristics of Aerosol Composition at Jeju City, Korea

  • Hu, Chul-Goo;Lee, Ki-Ho;Oh, Tae-Gwon;Kang, Chun-Hee;Yang, Soon-Mi
    • Journal of Environmental Science International
    • /
    • v.12 no.5
    • /
    • pp.541-549
    • /
    • 2003
  • Aerosol measurement were carried out to investigate the characteristics of its chemical composition directly affected by the local emissions of Jeju City, Jeju Island by using an eight-stage cascade impactor from Dec. 1999 to Aug. 2000. The ambient aerosol concentrations measured at Jeju City were generally very low but the fine particle concentrations were to be higher than the US standard of PM2.5. The majority of sulfate were non sea salt and contained in the fine particles. In the fine particles, the concentrations of Na$\^$+/, K$\^$+/, Mg$\^$2+/, Ca$\^$2+/, Cl$\^$-/ and NO$\sub$3$\^$-/ had a tendency to increase during the springtime rather than the other seasons. However, the springtime sulfate and ammonium concentrations in the fine particles were slightly lower than those during the other seasons. On the other hand, associated with the coarse particles, the concentrations of ionic species except potassium and ammonium were elevated during the springtime. The calcium concentrations in the coarse particles were increased up to 8 times relative to the other seasons.

The Construction and Application of Effective Coefficient for Aerosol Size Distribution

  • Lin, Tang-Huang;Liu, Gin-Rong;Chen, A.J.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.594-596
    • /
    • 2003
  • Due to the fact that the composition and variability of aerosols is considered rather complex, it is difficult to employ a simple and straightforward physical model in calculating the aerosol size distribution in the absence of actual data. This complicates the already difficult retrieval of various atmospheric parameters from remotely sensed data. Thus, the main purpose of this study is trying to find an effective aerosol size coefficient that is stable, and can depict the particle size distribution. This paper also attempts to construct an 'effective aerosol size coefficient' database for each respective season, where it can quickly and effectively supply pertinent information of the atmosphere's opacity.

  • PDF

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

Investigation of the Optical and Cloud Forming Properties of Pollution, Biomass Burning, and Mineral Dust Aerosol

  • Lee Yong-Seop
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2006.04a
    • /
    • pp.55-56
    • /
    • 2006
  • This thesis describes the use of measured aerosol size distributions and size-resolved hygroscopic growth to examine the physical and chemical properties of several particle classes. The primary objective of this work was to investigate the optical and cloud forming properties of a range of ambient aerosol types measured in a number of different locations. The tool used for most of these analyses is a differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system developed in our research group. To collect the data described in two of the chapters of this thesis, an aircraft-based version of the DMA / TDMA was deployed to Japan and California. The data described in two other chapters were conveniently collected during a period when the aerosol of interest came to us. The unique aspect of this analysis is the use of these data to isolate the size distributions of distinct aerosol types in order to quantify their optical and cloud forming properties. I used collected data during the Asian Aerosol Characterization Experiment (ACE-Asia) to examine the composition and homogeneity of a complex aerosol generated in the deserts and urban regions of China and other Asian countries. An aircraft-based tandem differential mobility analyzer was used for the first time during this campaign to examine the size-resolved hygroscopic properties of particles having diameters between 40 and 586 nm. Asian Dust Above Monterey (ADAM-2003) study was designed both to evaluate the degree to which models can predict the long-range transport of Asian dust, and to examine the physical and optical properties of that aged dust upon reaching the California coast. Aerosol size distributions and hygroscopic growth are measured in College Station, TX to investigate the cloud nucleating and optical properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types that were observed during this period. The predicted CCN concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction coefficients are calculated at a wavelength of 550 nm.

  • PDF

Numerical Computation of the Mass Transfer between Gaseous and Particulate Materials Considering the Hysteresis Phenomena of Atmospheric Aerosol (에어로솔의 이력현상을 고려한 대기 중 기체상/입자상 간의 물질전달 수치모사)

  • Kim, Du-Eil;Yoo, Kee-Youn
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.202-218
    • /
    • 2010
  • It is well known that the atmospheric inorganic aerosol has the hysteresis phenomena depending on the history of relative humidity. However, the current computational researches have assumed that the physical/chemical state of atmospheric aerosol is only determined by a branch of hysteresis, efflorescence or deliquescence. In this work, we applied the MATLAB-based UHAEROm thermodynamics module to simulate the dynamic interaction between gaseous species $NH_3$ and $HNO_3$, and the two mono-disperse particulate populations in the course of efflorescence and deliquescence, respectively. We conducted the 10 case studies considering the particulate phase with the atmospherically prevailing chemical composition and found that the final states of the particles are determined through the qualitatively five different trajectories by the dynamic interaction between gaseous and two different kinds of particulates. As a result, we show that the coexistence of meta-stable and stable particles drives the different physical/chemical destination comparing with the ones generated from the solitary efflorescence or deliquescence branch.