• Title/Summary/Keyword: aeroponic system

Search Result 17, Processing Time 0.018 seconds

A Study on the Irrigation System of Greenwell Using Ultrasonic Mist Fogger System (초음파안개분무시스템을 이용한 벽면녹화 관수시스템 개발 연구)

  • Kim, Kyung-Hoon;Kim, Yong;Sung, Hyun Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.6
    • /
    • pp.135-143
    • /
    • 2013
  • Ultrasonic mist fogger and the fan were used for investigating the availability of fog circulation system in greenwall and the potential growing ability of the plant. The mist caused by ultrasonic mist fogger was circulated by the fan through the pipeline and supplied to the pots containing plants. Moisture content of the 3 different soils was measured at different irrigation time points. The moisture content of 15-26% in PP and Co soil was maintained at irrigation of 24H, 18H, 12H in a day. Proper growth condition was found in Ardisia pusilla and Hosta plantaginea at the height of L level after 1 month of growth when the plants were irrigated by the fog circulation system. The results suggest that the fog circulation, by ultrasonic mist fogger to the green walls is system of choice for suppling moisture to plants.

Effect of Root Zone Cooling on Growth Responses and Tuberization of Hydroponically Grown 'Superior' Potato (Solanum tuberosum) in Summer

  • Chang, Dong-Chil;Jeong, Jin-Cheol;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.340-345
    • /
    • 2006
  • A potato (Solanum tuberosum L. cv. Superior) cultivar was grown in aeroponic cultivation system to investigate the effect of root zone cooling in summer. Based on their nutrient uptake, growth responses, and tuberization, the possibilities for potato seed production were determined. Although shoot growth and early tuberization increased in the conventional non-cooling root zone system (root zone temperature of $25\pm2^{\circ}C$), stolen growth, photosynthesis, transpiration rate and number of tubers produced were higher in the cooling root zone system ($20\pm2^{\circ}C$) than in the non-cooling system. Increasing root zone temperature above $25^{\circ}C$ stimulated absorption of K more than T-N, P, Ca, Fe and Mn. On the other hand, root zone temperatures in the range of $20^{\circ}C$ to $25^{\circ}C$ did not affect Mg contents. The lower uptake and supply to leaves of T-N, Fe and Mn at the high root zone temperature promoted early tuberization and advanced haulm senescence. The results stress the importance of keeping root zone temperature to as low as below 20, particularly in summer under temperate Bone.

Effect of Solution Culture System on Growth and Mini-tuber Yield of Hydroponically Grown Potato(Solanum tuberosum L. cv. Dejima) (양액재배방식이 '대지' 감자(Solanum tuberosum L.)의 생육 형 소괴경 형성에 미치는 영향)

  • 김기택;박용봉
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.198-204
    • /
    • 1997
  • This study was conducted to investigate the effect of solution culture systems on growth and mini-tuber yields of hydroponlcally grown potato (Solanum tuberosun L. cv. Dejima). The growth of stem and foliage at 40 and 60 days after planting were better in aeroponics system than the other systems, and stem length and number of stems per plant at 90 days after planting were the greatest as of 65.4 cm, 7.3 in aeroponics and the lowest as of 49.5 cm, 3.2 in scoria media system. Stolon length was the longest as of 30.4 cm in aeroponics at 90 days after planting, and number of stolons was the greatest as of 10.5 in NFT. Number of mini-tubers per plant at 90 days after planting was 67.1, 62. 5, 20.1 and 18.0 in aeroponics, NFT, perlite and scoria media, respectively. The perlite media system made the fewest enlargement of lenticels of mini-tubers. The results indicate that aeroponic system can be used effectively for mini-tuber potato production.

  • PDF

Performance analysis of an experimental plant factory

  • Ryu, Dong-Ki;Kang, Sin-Woo;Chung, Sun-Ok;Hong, Soon-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.395-403
    • /
    • 2013
  • Plant factory has drawn attention in many countries in the world due to capability of environmental control not only for better yield and quality, but also for increase in functional and medicinal components of the products. In this paper, an experimental plant factory was constructed for various tests under different environmental conditions, and the operations were evaluated. A production room was constructed with adiabatic materials with dimensions of $6,900{\times}3,000{\times}2,500$ mm ($L{\times}W{\times}H$). Four sets of $2,890{\times}600{\times}2,320$ mm ($L{\times}W{\times}H$) production frame unit, each with 9 light-installed beds and an aeroponic fertigation system, resulting in 36 beds, were prepared. Accuracy and response were evaluated for each environmental control component with and without crops. Air temperature, humidity, $CO_2$ concentration, light intensity, frequency, and duty ratio, fertigation rate and scheduling were controllable from a main control computer through wireless communication devices. When the plant factory was operated without crop condition, the response times were 8 minutes for change in temperature from 20 to $15^{\circ}C$ and 20 minutes from 15 to $20^{\circ}C$; 7 minutes for change in humidity from 40 to 65%; and 4 minutes for change in $CO_2$ concentration from 450 to 1000 ppm. When operated for 24 hours with crop cultivation; average, maximum, and minimum values of temperatures were 20.06, 20.8, and $18.8^{\circ}C$; humidity were 66.72, 69.37, and 63.73%; $CO_2$ concentrations were 1017, 1168, and 911 ppm, respectively. Photosynthetic Photon Flux Density was increased as the distance from the light source decreased, but variability was greater at shorter distances. Results of the study would provide useful information for efficient application of the plant factory and to investigate the optimum environment for crop growth through various experiments.

Tuber Yield and Size Distribution of Potato 'Dejima' (Solanum tuberosum L.) Affected by Stem Cutting Ages and Harvest Time in Aeroponics (경삽묘 연령과 수확시기가 분무경재배 씨감자 '대지'의 생육과 수량에 미치는 영향)

  • Chae, Won-Byoung;Ahn, Seung-Joon;Choi, Hak-Soon;Kwack, Yong-Bum;Goo, Dae-Hoe;Jeong, Myeong-Il
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.261-265
    • /
    • 2008
  • This study was carried out to investigate the effects of stem cutting ages and harvest time on the growth and yield of potato 'Dejima' in aeroponics. The stem cuttings were produced from in vitro plantlets and transplanted into an aeroponic system with 20, 30, 40 and 50 day-old stem cuttings (DOS). Tubers were harvested 60, 70, 80 and 90 days after transplanting (DAT) and sorted into following categories: $1{\sim}5$, $5{\sim}10$, $10{\sim}20$, $20{\sim}30$, $30{\sim}40$ and over 40 g. Plant height from the 40 DOS was the highest during the growing periods but no significant difference was observed on 75 DAT. The tuber weight increased until 90 DAT with the greatest weight of tubers in the 20 and 40 DOS. However, there was no significant difference among 20, 30 and 40 DOS in the number and weight of tubers. Harvesting at 80 and 90 DAT increased the number of tubers over 5 g, which are usually considered as appropriate for direct field planting.

Increasing Kale Sulforaphane Contents by Combining Geraniol with Water Stress in Indoor Farm Aeroponics (분무경 식물공장에서 수분스트레스와 geraniol 스프레이에 의한 케일의 설포라판 함량 증가)

  • Ju, Jong Moon;Byeon, Jae Il
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.298-302
    • /
    • 2022
  • Sulforaphane is a sulfur-containing substance found in large amounts in cruciferous plants and has been reported in several studies to have anticancer effects. Kale is a representative cruciferous plant known as a superfood and is widely used as an ingredient in various dishes. In this study, in order to investigate a cultivation method for increasing kale's content of sulforaphane, kale was treated with geraniol or methyl jasmonate and water stressed during cultivation using a aeroponic culture system in a fully enclosed plant factory. Geraniol or methyl jasmonate were sprayed on the kale's leaf surface once a day for 2 days, and water deprivation stress was conducted for 3 days after 7 days from first treatment day. No difference in growth between control, geraniol, methyl jasmonate treated groups were observed during cultivation. The study results showed that the kale sulforaphane content increased by 60% in the group treated with geraniol compared to the control group and that the group treated with water deprivation stress in addition to geraniol showed a significant increase of 414%. These results show that kale with an increased content of sulforaphane can be grown and that geraniol can be a good research material for increasing the content of functional substances in plants.

Relativeness between Growth and Bio-informations of Aeroponically Grown Tomato as Influenced by Spray Intervals of Nutrient Solution (양액의 분무간격에 따른 분무경재배 토마토의 생장 및 생체정보와의 관련성)

  • 정순주;소원온;지전영남;영목방부
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.154-161
    • /
    • 1992
  • This experiment was carried oui to determine the relativeness between growth, yield characters and bio-informations as influenced by the spray and rest time intervals of nutrient solution. Tomato(Lycopersicon esculentum Mill.) were grown in aeroponic system on a misting schedule of continuously 60 sec, 30 sec and 10 sec at 10 min intervals with full strength Yamazaki's solution recommended for tomato production. The results obtained were as follows : 1. Leaf area was highest in the plot of 30 sec spray and 10 min rest while the forest one was the plot of 60 sec spray and 10 min rest. Growth characteristics in terms of dry weight of each organ, number of flower, number of flower setted and fruit dry weight were greater in the plot of 30 sec spray and 10 min rest than the other treatments. 2. The number of flower increased with decreasing dry weight but number of flower sorted was not significantly different among treatment except for the plot of 60 sec spray and 10 min rest. 3. Leaf dry weight and fruit dry weight were highly correlated so that 30 sec spray and 10 min rest plot which is the highest fruit dry weight showed the largest leaf area. Continuously sprayed plot reduced markedly the fruit dry weight compared with leaf area. Optimum spray and rest time of nutrient solution in the range of this experiment was determined as 30 sec spray and 10 min rest. 4. Solar radiation within glasshouse during daytime reduced severely compared with outdoor one and air temperature within greenhouse was higher than the leaf temperature of tomato plant. The changes of environmental factors, solar radiation, temperature were accompanied with the sensitive change of bio-informations of tomato leaf Especially differences of spray intervals of nutrient solution affected greatly to the changes of bio-informations : leaf water potential, stomatal resistance and leaf temperature etc. 5. The changing patterns of leaf growth as influenced by the spray and rest intervals of nutrient solution were closely related to the leaf water potential, stomatal resistance and leaf temperature. Feasibility was demonstrated that measurement of bio-information of tomato leaf as influenced by the change of environmental factors could be expected to the amount of growth and fruit yield.

  • PDF