• Title/Summary/Keyword: aeroelastic analysis

Search Result 200, Processing Time 0.029 seconds

Model Establishment of a Deployable Missile Control Fin Using Substructure Synthesis Method (부구조물 합성법을 이용한 접는 미사일 조종날개 모델 수립)

  • Kim, Dae-Kwan;Bae, Jae-Sung;Lee, In;Han, Jae-Hung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.813-820
    • /
    • 2005
  • A deployable missile control fin has some structural nonlinearities because of the worn or loose hinges and the manufacturing tolerance. The structural nonlinearity cannot be eliminated completely, and exerts significant effects on the static and dynamic characteristics of the control fin. Thus, It is important to establish the accurate deployable missile control fin model. In the present study, the nonlinear dynamic model of 4he deployable missile control fin is developed using a substructure synthesis method. The deployable missile control fin can be subdivided Into two substructures represented by linear dynamic models and a nonlinear hinge with structural nonlinearities. The nonlinear hinge model is established by using a system identification method, and the substructure modes are improved using the Frequency Response Method. A substructure synthesis method Is expanded to couple the substructure models and the nonlinear hinge model, and the nonlinear dynamic model of the fin is developed. Finally, the established nonlinear dynamic model of the deployable missile control fin is verified by dynamic tests. The established model is In good agreement with test results, showing that the present approach is useful in aeroelastic stability analyses such as time-domain nonlinear flutter analysis.

Active Control of Flow-Induced Vibration Using Piezoelectric Actuators (압전 작동기를 이용한 유체 유기 진동의 능동 제어)

  • 한재홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.446-451
    • /
    • 2003
  • This paper presents some examples of active control of flow-induced vibration using piezoelectric actuators. The flutter phenomenon, which is the dynamic instability of structure due to mutual interaction among inertia, stiffness, and aerodynamic forces, may cause catastrophic structural failure, and therefore the active flutter suppression is one of the main objectives of the aeroelastic control. Active flutter control has been numerically and experimentally studied for swept-back lifting surfaces using piezoelectric actuation. A finite element method, a panel aerodynamic method, and the minimum state space realization are involved in the development of the governing equation, which is efficiently used for the analysis of the system and design of control laws with modern control framework. The active control suppressed flow-induced vibrations and extended the flutter speed around by 10%. Another representative flow-induced vibration phenomenon is the oscillation of blunt bodies due to the vortex shedding. In general, it is quite difficult to set up the numerical model because of the strong non-linearity of the vortex shedding structure. Therefore, we applied adaptive positive position feedback controller, which requires no pre-determined model of the plant, and successfully suppressed the flow-induced vibration.

  • PDF

An Overview of Flutter Prediction in Tests Based on Stability Criteria in Discrete-Time Domain

  • Matsuzaki, Yuji
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.305-317
    • /
    • 2011
  • This paper presents an overview on flutter boundary prediction in tests which is principally based on a system stability measure, named Jury's stability criterion, defined in the discrete-time domain, accompanied with the use of autoregressive moving-average (AR-MA) representation of a sampled sequence of wing responses excited by continuous air turbulences. Stability parameters applicable to two-, three- and multi-mode systems, that is, the flutter margin for discrete-time systems derived from Jury's criterion are also described. Actual applications of these measures to flutter tests performed in subsonic, transonic and supersonic wind tunnels, not only stationary flutter tests but also a nonstationary one in which the dynamic pressure increased in a fixed rate, are presented. An extension of the concept of nonstationary process approach to an analysis of flutter prediction of a morphing wing for which the instability takes place during the process of structural morphing will also be mentioned. Another extension of analytical approach to a multi-mode aeroelastic system is presented, too. Comparisons between the prediction based on the digital techniques mentioned above and the traditional damping method are given. A future possible application of the system stability approach to flight test will be finally discussed.

A linear model for structures with Tuned Mass Dampers

  • Ricciardelli, Francesco
    • Wind and Structures
    • /
    • v.2 no.3
    • /
    • pp.151-171
    • /
    • 1999
  • In its 90 years of life, the Tuned Mass Damper have found application in many fields of engineering as a vibration reducing device. The evolution of the theory of TMDs is briefly outlined in the paper. A generalised mathematical linear model for the analysis of the response of line-like structures with TMDs is presented. The system matrices of the system including the TMDs are written in the state space as a function of the mean wind speed. The stability of the system can be analysed and the Power Spectral Density Function of any response parameter calculated, taking into account an arbitrary number of modes of vibration as well as an arbitrary number of TMDs, for any given PSDF of the excitation. The procedure can be used to optimise the number, position and mechanical properties of the damping devices, with respect to any response parameter. Due to the stationarity of the excitation, the method is well suited to structures subjected to the wind action. In particular the procedure allows the calculation of the onset galloping wind speed and the response to buffeting, and a linearisation of the aeroelastic behaviour allows its use also for the evaluation of the response to vortex shedding. Finally three examples illustrate the suggested procedure.

Application of a discrete vortex method for the analysis of suspension bridge deck sections

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.333-352
    • /
    • 2001
  • A two dimensional discrete vortex method (DIVEX) has been developed to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The predictions for the static section demonstrate that the method captures the character of the flow field at different angles of incidence. In addition, flutter derivatives are obtained from simulations of the flow field around the section undergoing vertical and torsional oscillatory motion. The subsequent predictions of the critical flutter velocity compare well with those from both experiment and other computations. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results from DIVEX are shown to be in accordance with previous analytical and experimental studies. In conclusion, the results indicate that DIVEX is a very useful design tool in the field of wind engineering.

Wind-induced response and loads for the Confederation Bridge -Part I: on-site monitoring data

  • Bakht, Bilal;King, J. Peter C.;Bartlett, F.M.
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.373-391
    • /
    • 2013
  • This is the first of two companion papers that analyse ten years of on-site monitoring data for the Confederation Bridge to determine the validity of the original wind speeds and wind loads predicted in 1994 when the bridge was being designed. The check of the original design values is warranted because the design wind speed at the middle of Northumberland Strait was derived from data collected at shore-based weather stations, and the design wind loads were based on tests of section and full-aeroelastic models in the wind tunnel. This first paper uses wind, tilt, and acceleration monitoring data to determine the static and dynamic responses of the bridge, which are then used in the second paper to derive the static and dynamic wind loads. It is shown that the design ten-minute mean wind speed with a 100-year return period is 1.5% less than the 1994 design value, and that the bridge has been subjected to this design event once on November 7, 2001. The dynamic characteristics of the instrumented spans of the bridge including frequencies, mode shapes and damping are in good agreement with published values reported by others. The on-site monitoring data show bridge response to be that of turbulent buffeting which is consistent with the response predicted at the design stage.

Transonic Flutter Characteristics of Supercritical Airfoils Considering Shockwave and Flow Separation Effects (충격파 및 유동박리 효과를 고려한 초임계 에어포일의 천음속 플러터 특성)

  • Lin, Han;Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Seok-Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.2
    • /
    • pp.8-17
    • /
    • 2009
  • In this study, flutter analyses for supercritical airfoil have been conducted in transonic region. Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed static and dynamic responses of supercritical airfoil. Reynolds-averaged Navier-Stokes equations with Spalart-Allmaras (S-A) and SST ${\kappa}-{\omega}$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of cascades for fluid-structure interaction (FSI) problems. Also, flow-induced vibration (FIV) analyses for various supercritical airfoil models have been conducted. Detailed flutter responses for supercritical are presented to show the physical performance and vibration characteristics in various angle of attack.

  • PDF

Flutter Analysis of Multiple Blade Rows Vibrating Under Aerodynamic Coupling

  • Kubo, Ayumi;Namba, Masanobu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.6-15
    • /
    • 2008
  • This paper deals with the aeroelastic instability of vibrating multiple blade rows under aerodynamic coupling with each other. A model composed of three blade rows, e.g., rotor-stator-rotor, where blades of the two rotor cascades are simultaneously vibrating, is considered. The displacement of a blade vibrating under aerodynamic force is expanded in a modal series with the natural mode shape functions, and the modal amplitudes are treated as the generalized coordinates. The generalized mass matrix and the generalized stiffness matrix are formulated on the basis of the finite element concept. The generalized aerodynamic force on a vibrating blade consists of the component induced by the motion of the blade itself and those induced not only by vibrations of other blades of the same cascade but also vibrations of blades in another cascade. To evaluate the aerodynamic forces, the unsteady lifting surface theory for the model of three blade rows is applied. The so-called k method is applied to determine the critical flutter conditions. A numerical study has been conducted. The flutter boundaries are compared with those for a single blade row. It is shown that the effect of the aerodynamic blade row coupling substantially modifies the critical flutter conditions.

  • PDF

Wind load parameters and performance of an integral steel platform scaffold system

  • Zhenyu Yang;Qiang Xie;Yue Li;Chang He
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.263-275
    • /
    • 2023
  • As a new kind of construction facility for high rise buildings, the integral steel platform scaffold system (ISPS) consisting of the steel skeleton and suspended scaffold faces high wind during the construction procedure. The lattice structure type and existence of core tubes both make it difficult to estimate the wind load and calculate the wind-induced responses. In this study, an aeroelastic model with a geometry scale ratio of 1:25 based on the ISPS for Shanghai Tower, with the representative square profile, is manufactured and then tested in a wind tunnel. The first mode of the prototype ISPS is a torsional one with a frequency of only 0.68 Hz, and the model survives under extreme wind speed up to 50 m/s. The static wind load and wind vibration factors are derived based on the test result and supplementary finite element analysis, offering a reference for the following ISPS design. The spacer at the bottom of the suspended scaffold is suggested to be long enough to touch the core tube in the initial status to prevent the collision. Besides, aerodynamic wind loads and cross-wind loads are suggested to be included in the structural design of the ISPS.

Design Load Case Analysis and Comparison for a 5MW Offwhore Wind Turbine Using FAST, GH Bladed and CFD Method (FAST, GH Bladed 및 CFD기법을 이용한 5MW 해상풍력터빈 시스템 설계하중조건 해석 및 비교)

  • Kim, Ki-Ha;Kim, Dong-Hyun;Kwak, Young-Seob;Kim, Su-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.14-21
    • /
    • 2015
  • Design lifetime of a wind turbine is required to be at least 20 years. The most important step to ensure the deign is to evaluate the loads on the wind turbine as accurately as possible. In this study, extreme design load of a offshore wind turbine using Garrad Hassan (GH) Bladed and National Renewable Energy Laboratory (NREL) FAST codes are calculated considering structural dynamic loads. These wind turbine aeroelastic analysis codes are high efficiency for the rapid numerical analysis scheme. But, these codes are mainly based on the mathematical and semi-empirical theories such as unsteady blade element momentum (UBEM) theory, generalized dynamic wake (GDW), dynamic inflow model, dynamic stall model, and tower influence model. Thus, advanced CFD-dynamic coupling method is also applied to conduct cross verification with FAST and GH Bladed codes. If the unsteady characteristics of wind condition are strong, such as extreme design wind condition, it is possible to occur the error in analysis results. The NREL 5 MW offshore wind turbine model as a benchmark case is practically considered for the comparison of calculated designed loads. Computational analyses for typical design load conditions such as normal turbulence model (NTM), normal wind profile (NWP), extreme operation gust (EOG), and extreme direction change (EDC) have been conducted and those results are quantitatively compared with each other. It is importantly shown that there are somewhat differences as maximum amount of 18% among numerical tools depending on the design load cases.