• Title/Summary/Keyword: aerodynamics drag coefficient

Search Result 40, Processing Time 0.028 seconds

Aerodynamics of an intercity bus

  • Sharma, Rajnish;Chadwick, Daniel;Haines, Jonathan
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.257-273
    • /
    • 2008
  • A number of passive aerodynamic drag reduction methods were applied separately and then in different combinations on an intercity bus model, through wind tunnel studies on a 1:20 scale model of a Mercedes Benz Tourismo 15 RHD intercity bus. Computational fluid dynamics (CFD) modelling was also conducted in parallel to assist with flow visualisation. The commercial CFD package $CFX^{TM}$ was used. It has been found that dramatic reductions in coefficient of drag ($C_D$) of up to 70% can be achieved on the model using tapered and rounded top and side leading edges, and a truncated rear boat-tail. The curved front section allows the airflow to adhere to the bus surfaces for the full length of the vehicle, while the boat-tails reduce the size of the low pressure region at the base of the bus and more importantly, additional pressure recovery occurs and the base pressures rise, reducing drag. It is found that the CFD results show remarkable agreement with experimental results, both in the magnitude of the force coefficients as well as in their trends. An analysis shows that such a reduction in aerodynamic drag could lead to a significant 28% reduction in fuel consumption for a typical bus on intercity or interstate operation. This could translate to a massive dollar savings as well as significant emissions reductions across a fleet. On road tests are recommended.

Study on drag reduction of commercial vehicle using flow control device (유동 제어 장치를 이용한 상용차량의 항력저감 연구)

  • S. H. Kim;J. J. Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.8-13
    • /
    • 2023
  • The primary challenge in improving fuel efficiency and reducing air pollution for commercial vehicles is reducing their aerodynamic drag. Various flow control devices, such as cab-roof fairing, gap fairing, cab extender, and side skirt have been introduced to reduce drag, however, the drag reduction effect and applicability are different depending on each commercial vehicle model. To evaluate the fuel consumption of heavy vehicles, a comprehensive research approach, including drag force measurement, flow field analysis is required. This study investigated the effect of a cab extender, which installed rear region of cab, on a drag coefficient of commercial vehicle through wind tunnel experiments and CFD. The results showed that the cab extender significantly modified the flow structure around the vehicle, leading to 8.2% reduction in drag coefficient compared to the original vehicle model. These results would provide practical application for enhancing the aerodynamic performance and fuel efficiency of heavy vehicle.

Aerodynamics of the Projectile Overtaking a Moving Shock Wave (이동충격파를 추월하는 발사체의 공기역학)

  • Rajesh, C.;Kim, H.D.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.299-302
    • /
    • 2007
  • The aerodynamics of a projectile overtaking a moving shock wave is analyzed using a chimera scheme. The flow field characteristics for various shock wave Mach number and projectile masse are investigated. the unsteady forces acting on the projectile for both supersonic and impossible overtaking conditions are computed in order to analyze the aerodynamic characteristics of the projectile. It is seen that the projectile Mach number significantly affects the flow fields for both supersonic and impossible overtaking. Unsteady drag is influenced by the overtaking conditions. The unsteady drag coefficient is the highest for the impossible overtaking condition.

  • PDF

Unsteady Aerodynamics of Flat Plate with Porous Trailing-edge (다공성 표면 평판 끝 단 위의 비정상 공력 특성에 대한 연구)

  • Jeong, Ye-Eun;Moon, Young-J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.134-137
    • /
    • 2008
  • In this study, a computational analysis is conducted to investigate the effects of porous surfaces on the lift and drag forces of the flat plate. With the porous treatment, it is found that the strength of the Karman vortex as well as its influences over the trailing-edge surface are much weakened, resulting in significant reduction of the pressure fluctuations over the flat plate. The drag and lift coefficients are decreased by 85% and 18%, respectively, compared to the solid surface. The computed results also indicate that the size of the porous surface area does not have much influences but the back side of the flat plate has non-negligible effects on the interaction between the wall and the Karman vortex. As a result, the lift coefficient for the solid back side case is decreased only by 50.5% compared to the solid case and the drag coefficient is even increased by 65%.

  • PDF

Advancing drag crisis of a sphere via the manipulation of integral length scale

  • Moradian, Niloofar;Ting, David S.K.;Cheng, Shaohong
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.35-53
    • /
    • 2011
  • Spherical object in wind is a common scenario in daily life and engineering practice. The main challenge in understanding the aerodynamics in turbulent wind lies in the multi-aspect of turbulence. This paper presents a wind tunnel study, which focuses on the role of turbulence integral length scale ${\Lambda}$ on the drag of a sphere. Particular turbulent flow conditions were achieved via the proper combination of wind speed, orifice perforated plate, sphere diameter (D) and distance downstream from the plate. The drag was measured in turbulent flow with $2.2{\times}10^4{\leq}Re{\leq}8{\times}10^4$, $0.043{\leq}{\Lambda}/D{\leq}3.24$, and turbulence intensity Tu up to 6.3%. Our results confirmed the general trends of decreasing drag coefficient and critical Reynolds number with increasing turbulence intensity. More interestingly, the unique role of the relative integral length scale has been revealed. Over the range of conditions studied, an integral length of approximately 65% the sphere diameter is most effective in reducing the drag.

Investigation of Aerodynamic Characteristics of a Medium-Size Vehicle (중형 차량의 외부 유동특성에 관한 연구)

  • Lee, D.R.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.22-28
    • /
    • 2006
  • Computer simulation of the air flow over an automotive vehicle is now becoming a routine process in automotive industry to assess the aerodynamic characteristics of a medium-size vehicle such as $C_d\;and\;C_1$ and aslo to investigate the possibility of improving aerodynamic performance of the vehicle as a preliminary design for the production line. Mainly due to its contribution in saving time and cost in the development of new cars, computer simulation of the air flow over a vehicle is usually done well before a production car is introduced to the market and in gaining more and more attention as powerful computer resources are getting readily available nowadays. To aerodynamically design a car is mainly related with reducing a drag coefficient of car. A well designed car usually has a $C_d$ value in the range of $0.3{\sim}0.4$. It is understandable that automotive industry is rushing to reduce a drag coefficient as reducing even a small fraction of the $C_d$ value can have an enormous overall impact on many areas. Actually, the present research model was able to achieve a $C_d$ value in the range of $0.3{\sim}0.36$ for flow velocities of $60km/h{\sim}100km/h$ by strategically removing the possible factor hazardous to lower $C_d$ value. Prediction of the medium-size vehicle aerodynamics using CFD was performed when an actual car model was in the development stage and three-dimensional modeling was also performed to optimize it as the best model in terms of the best aerodynamic performance.

  • PDF

Wind tunnel investigations on aerodynamics of a 2:1 rectangular section for various angles of wind incidence

  • Keerthana, M.;Harikrishna, P.
    • Wind and Structures
    • /
    • v.25 no.3
    • /
    • pp.301-328
    • /
    • 2017
  • Multivariate fluctuating pressures acting on a 2:1 rectangular section (2-D) with dimensions of 9 cm by 4.5 cm has been studied using wind tunnel experiments under uniform and smooth flow condition for various angles of wind incidence. Based on the variation of mean pressure coefficient distributions along the circumference of the rectangular section with angle of wind incidence, and with the aid of skin friction coefficients, three distinct flow regimes with two transition regimes have been identified. Further, variations of mean drag and lift coefficients, Strouhal number with angles of wind incidence have been studied. The applicability of Universal Strouhal number based on vortex street similarity of wakes in bluff bodies to the 2:1 rectangular section has been studied for different angles of wind incidence. The spatio-temporal correlation features of the measured pressure data have been studied using Proper Orthogonal Decomposition (POD) technique. The contribution of individual POD modes to the aerodynamic force components, viz, drag and lift, have been studied. It has been demonstrated that individual POD modes can be associated to different physical phenomena, which contribute to the overall aerodynamic forces.

Influence of Rotating Wheel and Moving Ground Condition to Aerodynamic Performance of 3-Dimensional Automobile Configuration (돌아가는 바퀴 및 이동지면 조건이 3차원 자동차 형상의 공력성능에 미치는 영향에 관한 연구)

  • Kang, Seung-On;Jun, Sang-Ook;Park, Hoon-Il;Ku, Yo-Cheon;Kee, Jung-Do;Hong, Dong-Hee;Kim, Kyu-Hong;Lee, Dong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.100-107
    • /
    • 2010
  • This paper gives new conceptual descriptions of drag reduction mechanism owing to rotating wheel and moving ground condition when dealing with automotive aerodynamics. Using Computational Fluid Dynamics (CFD), flow simulation of three dimensional automobile configuration made by Vehicle Modeling Function (VMF) is performed and the influence of wheel arch, wheels, rotating wheel & moving ground condition to the automotive aerodynamic performance is analyzed. Finally, it is shown that rotating wheel & moving ground condition decreases automotive aerodynamic drag owing to the reduction of the induced drag led by the decrease of COANDA flow intensity of the rear trunk flow.

STUDY ON THE EFFECTS OF AIRFOIL TRAILING EDGE SHAPE ON THE WING AERODYNAMICS (익형 뒷전 형상이 날개 공력 특성에 미치는 영향)

  • Kim, W.H.;Ryu, G.M.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.75-79
    • /
    • 2014
  • In the paper, a study on the analysis of the effects of trailing edge thickness on the aerodynamic characteristics of an airfoil is described. In this research, modification of the formula representing NACA symmetric airfoil is studied to change the airfoil shape with different trailing edge thickness of user's choice. According to the result of aerodynamic characteristics, as the trailing edge thickness increases the maximum lift coefficient increases while the lift-to-drag ratio decreases. In this paper flow calculation results are demonstrated and the analysis on those results and findings on the effects of non-zero thickness of trailing edge are suggested.

Experimental and numerical aerodynamic investigation of a prototype vehicle

  • Akansu, Selahaddin Orhan;Akansu, Yahya Erkan;Dagdevir, Toygun;Daldaban, Ferhat;Yavas, Feridun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.811-827
    • /
    • 2015
  • This study presents experimental and numerical aerodynamic investigation of a prototype vehicle. Aerodynamics forces examined which exerted on a prototype. This experimental study was implemented in a wind tunnel for the Reynolds number between $10^5-3.1{\times}10^5$. Numerical aerodynamic analysis of the vehicle is conducted for different Reynolds number by using FLUENT CFD software, with the k-$\varepsilon$ realizable turbulence model. The studied model aims at verifying the aerodynamic forces between experimental and numerical results. After the Reynolds number of $2.8{\times}10^5$, the drag coefficient obtained experimentally becomes independent of Reynolds number and has a value of 0.25.