• 제목/요약/키워드: aerodynamic response

검색결과 259건 처리시간 0.028초

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

The acrosswind response of the downwind prism in a twin-prism system with a staggered arrangement

  • Fang, Fuh-Min;Chung, Cheng-Yang;Li, Yi-Chao;Liu, Wen-Chin;Lei, Perng-Kwei
    • Wind and Structures
    • /
    • 제17권3호
    • /
    • pp.245-262
    • /
    • 2013
  • The flow interaction between two identical neighboring twin square prisms in a staggered arrangement in an open terrain was investigated experimentally. The downwind prism was mounted on a rigid-aeroelastic setup in an open-terrain boundary layer flow to measure its acrosswind root-mean-square responses and aerodynamic damping ratios. By varying the relative location of the upwind prism and the Scruton number associated with the downwind prism, the acrosswind aeroelastic behavior of the downwind prism was analyzed and compared to that of an isolated one. Results showed that the acrosswind root-mean-square response of the downwind prism could be either suppressed or enhanced by the wake flow produced by the neighboring upwind prism. Besides the assessment of the wake effect of the downwind prism, finally, regressed relationships were presented to describe the variation of the aerodynamic damping ratio so as to predict its acrosswind fluctuating response numerically.

능동 난류 생성을 통한 장대 교량의 공력 특성 비교 (Aerodynamic Characteristics of Long-Span Bridges under Actively Generated Turbulences)

  • 이승호;권순덕
    • 대한토목학회논문집
    • /
    • 제31권5A호
    • /
    • pp.341-349
    • /
    • 2011
  • 본 연구에서는 다양한 풍동실험을 통하여 기류 조건에 따른 트윈박스 거더 교량의 공기역학적 특성을 파악하는데 그 목적이 있다. 이를 위하여 자연적인 난류를 생성할 수 있는 능동 난류 발생장치를 개발하였고 검증하였다. 그리고 능동 난류 및 격자 난류 조건하에서 정적공기력, 비정상공기력 그리고 버페팅 응답 측정 실험을 수행하였다. 풍동실험 결과를 보면, 난류 적분길이는 교량의 정적공기력과 $A_1^*$를 제외한 플러터계수에는 영향을 주지 않는 것으로 나타났다. 그리고 난류 강도는 비정상공기력에 일부 영향을 미치고, 난류 적분길이 또한 일부 수직 방향 성분에 영향을 주는 것으로 나타났다.

Coupled buffeting response analysis of long-span bridges by the CQC approach

  • Ding, Quanshun;Chen, Airong;Xiang, Haifan
    • Structural Engineering and Mechanics
    • /
    • 제14권5호
    • /
    • pp.505-520
    • /
    • 2002
  • Based on the modal coordinates of the structure, a finite-element and CQC (complete quadratic combination) method for analyzing the coupled buffeting response of long-span bridges is presented. The formulation of nodal equivalent aerodynamic buffeting forces is derived based on a reasonable assumption. The power spectral density and variance of nodal displacements and elemental internal forces of the bridge structure are computed using the finite-element method and the random vibration theory. The method presented is very efficient and can consider the arbitrary spectrum and spatial coherence of natural winds and the multimode and intermode effects on the buffeting responses of bridge structures. A coupled buffeting analysis of the Jiangyin Yangtse River Suspension Bridge with 1385 in main span is performed as an example. The results analyzed show that the multimode and intermode effects on the buffeting response of the bridge deck are quite remarkable.

A Study on the Multi-Objective Optimization of Impeller for High-Power Centrifugal Compressor

  • Kang, Hyun-Su;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권2호
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a method for the multi-objective optimization of an impeller for a centrifugal compressor using fluid-structure interaction (FSI) and response surface method (RSM) was proposed. Numerical simulation was conducted using ANSYS CFX and Mechanical with various configurations of impeller geometry. Each design parameter was divided into 3 levels. A total of 15 design points were planned using Box-Behnken design, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of the DOE were used to find the optimal shape of the impeller. Two objective functions, isentropic efficiency and equivalent stress were selected. Each objective function is an important factor of aerodynamic performance and structural safety. The entire process of optimization was conducted using the ANSYS Design Xplorer (DX). The trade-off between the two objectives was analyzed in the light of Pareto-optimal solutions. Through the optimization, the structural safety and aerodynamic performance of the centrifugal compressor were increased.

Analytical and experimental study on aerodynamic control of flutter and buffeting of bridge deck by using mechanically driven flaps

  • Phan, Duc-Huynh;Kobayshi, Hiroshi
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.549-569
    • /
    • 2013
  • A passive control using flaps will be an alternative solution for flutter stability and buffeting response of a long suspension bridge. This method not only enables a lightweight economic stiffening girder without an additional stiffness for aerodynamic stability but also avoid the problems from the malfunctions of control systems and energy supply system of an active control by winglets and flaps. A time domain approach for predicting the coupled flutter and buffeting response of bridge deck with flaps is investigated. First, the flutter derivatives of bridge deck and flaps are found by experiment. Next, the derivation of time domain model of self-excited forces and control forces of sectional model is reported by using the rational function approximation. Finally, the effectiveness of passive flap control is investigated by the numerical simulation. The results show that the passive control by using flaps can increase the flutter speed and decrease the buffeting response. The experiment results are matched with numerical ones.

Aerodynamic and hydrodynamic force simulation for the dynamics of double-pendulum articulated offshore tower

  • Zaheer, Mohd Moonis;Islam, Nazrul
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.341-354
    • /
    • 2021
  • Articulated towers are one of the class of compliant offshore structures that freely oscillates with wind and waves, as they are designed to have low natural frequency than ocean waves. The present study deals with the dynamic response of a double-pendulum articulated tower under hydrodynamic and aerodynamic loads. The wind field is simulated by two approaches, namely, single-point and multiple-point. Nonlinearities such as instantaneous tower orientation, variable added mass, fluctuating buoyancy, and geometrical nonlinearities are duly considered in the analysis. Hamilton's principle is used to derive the nonlinear equations of motion (EOM). The EOM is solved in the time domain by using the Wilson-θ method. The maximum, minimum, mean, and standard deviation and salient power spectral density functions (PSDF) of deck displacement, bending moment, and central hinge shear are drawn for high and moderate sea states. The outcome of the analyses shows that tower response under multiple-point wind-field simulation results in lower responses when compared to that of single-point simulation.

Aerodynamic behaviour of double hinged articulated loading platforms

  • Zaheer, Mohd Moonis;Hasan, Syed Danish;Islam, Nazrul;Aslam, Moazzam
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.17-42
    • /
    • 2021
  • Articulated loading platforms (ALPs) belongs to a class of offshore structures known as compliant. ALP motions have time periods falling in the wind excitation frequency range due to their compliant behaviour. This paper deals with the dynamic behavior of a double hinged ALP subjected to low-frequency wind forces with random waves. Nonlinear effects due to variable submergence, fluctuating buoyancy, variable added mass, and hydrodynamic forces are considered in the analysis. The random sea state is characterized by the Pierson-Moskowitz (P-M) spectrum. The wave forces on the submerged elements of the platform's shaft are calculated using Morison's Equation with Airy's linear wave theory ignoring diffraction effects. The fluctuating wind load has been estimated using Ochi and Shin wind velocity spectrum for offshore structures. The nonlinear dynamic equation of motion is solved in the time domain by the Wilson-θ method. The wind-structure interactions, along with the effect of various other parameters on the platform response, are investigated. The effect of offset of aerodynamic center (A.C.) with the center of gravity (C.G.) of platform superstructure has also been investigated. The outcome of the analyses indicates that low-frequency wind forces affect the response of ALP to a large extent, which otherwise is not enhanced in the presence of only waves. The mean wind modifies the mean position of the platform surge response to the positive side, causing an offset. Various power spectral densities (PSDs) under high and moderate sea states show that apart from the significant peak occurring at the two natural frequencies, other prominent peaks also appear at very low frequencies showing the influence of wind on the response.

Aeroelastic modeling to investigate the wind-induced response of a multi-span transmission lines system

  • Azzi, Ziad;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam Gan;Shdid, Caesar Abi
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.231-257
    • /
    • 2022
  • Transmission lines systems are important components of the electrical power infrastructure. However, these systems are vulnerable to damage from high wind events such as hurricanes. This study presents the results from a 1:50 scale aeroelastic model of a multi-span transmission lines system subjected to simulated hurricane winds. The transmission lines system considered in this study consists of three lattice towers, four spans of conductors and two end-frames. The aeroelastic tests were conducted at the NSF NHERI Wall of Wind Experimental Facility (WOW EF) at the Florida International University (FIU). A horizontal distortion scaling technique was used in order to fit the entire model on the WOW turntable. The system was tested at various wind speeds ranging from 35 m/s to 78 m/s (equivalent full-scale speeds) for varying wind directions. A system identification (SID) technique was used to evaluate experimental-based along-wind aerodynamic damping coefficients and compare with their theoretical counterparts. Comparisons were done for two aeroelastic models: (i) a self-supported lattice tower, and (ii) a multi-span transmission lines system. A buffeting analysis was conducted to estimate the response of the conductors and compare it to measured experimental values. The responses of the single lattice tower and the multi-span transmission lines system were compared. The coupling effects seem to drastically change the aerodynamic damping of the system, compared to the single lattice tower case. The estimation of the drag forces on the conductors are in good agreement with their experimental counterparts. The incorporation of the change in turbulence intensity along the height of the towers appears to better estimate the response of the transmission tower, in comparison with previous methods which assumed constant turbulence intensity. Dynamic amplification factors and gust effect factors were computed, and comparisons were made with code specific values. The resonance contribution is shown to reach a maximum of 18% and 30% of the peak response of the stand-alone tower and entire system, respectively.

최적 주속비 구간에서 로터속도 비선형 파라미터를 이용한 풍력터빈의 토크제어 (Torque Control of Wind Turbine Using Nonlinear Parameter of Rotor Speed in the Region of Optimal Tip Speed Ratio)

  • 임채욱;김상균
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.30-35
    • /
    • 2012
  • Aerodynamic torque of wind turbine has nonlinear properties. Nonlinearity of aerodynamic torque is very important in wind turbine in the aspect of control. The traditional torque control method using optimal mode gain has been applied in many wind turbines but its response is slower as wind turbine size is larger. In this paper, a torque control method using a nonlinear parameter of rotor speed among nonlinear properties of aerodynamic torque. Simulink model is implemented to obtain the nonlinear parameter of rotor speed and numerical simulations for a 2MW wind turbine are carried out and simulation results for the traditional and proposed torque control methods are compared.