• Title/Summary/Keyword: aerodynamic optimization design

Search Result 189, Processing Time 0.036 seconds

Multidisciplinary Multi-Point Design Optimization of Supersonic fighter Wing Using Response Surface Methodology (반응면 기법을 이용한 초음속 전투기 날개의 다학제간 다점 설계)

  • Kim Y. S.;Kim J. M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.173-176
    • /
    • 2004
  • In this study, the multidisciplinary aerodynamic-structural optimal design is carried out for the supersonic fighter wing. Through the aeroelastic analyses of the various candidate wings, the aerodynamic and structural performances are calculated such as the lift coefficient, the drag coefficient and the deformation of the wing. In general, the supersonic fighter is maneuvered under the various flight conditions and those conditions must be considered all together during the design process. The multi-point design, therefore, is deemed essential. For this purpose, supersonic dash, long cruise range and high angle of attack maneuver are selected as representative design points. Based on the calculated performances of the candidate wings, the response surfaces for the objectives and constraints are generated and the supersonic fighter wing is designed for better aerodynamic performances and less weights than the baseline. At each design point, the single-point design is performed to obtain better performances. Finally, the multi-point design is performed to improve the aerodynamic and structural performances for all design points. The optimization results of the multi-point design are compared with those of the single-point designs and analyzed in detail.

  • PDF

Study on aerodynamic shape optimization of tall buildings using architectural modifications in order to reduce wake region

  • Daemei, Abdollah Baghaei;Eghbali, Seyed Rahman
    • Wind and Structures
    • /
    • v.29 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • One of the most important factors in tall buildings design in urban spaces is wind. The present study aims to investigate the aerodynamic behavior in the square and triangular footprint forms through aerodynamic modifications including rounded corners, chamfered corners and recessed corners in order to reduce the length of tall buildings wake region. The method used was similar to wind tunnel numerical simulation conducted on 16 building models through Autodesk Flow Design 2014 software. The findings revealed that in order to design tall 50 story buildings with a height of about 150 meters, the model in triangular footprint with aerodynamic modification of chamfered corner facing wind direction came out to have the best aerodynamic behavior comparing the other models. In comparison to the related reference model (i.e., the triangular footprint with sharp corners and no aerodynamic modification), it could reduce the length of the wake region about 50% in general. Also, the model with square footprint and aerodynamic modification of chamfered corner with the corner facing the wind could present favorable aerodynamic behavior comparing the other models of the same cluster. In comparison to the related reference model (i.e., the square footprint with sharp corners and no aerodynamic modification), it could decrease the wake region up to 30% lengthwise.

The Aerodynamic Shape Optimization with Trust Region Methods (Trust Region 기법을 이용한 공력 형상 최적설계)

  • Lee, Jae-Hun;Jung, Kyung-Jin;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.130-133
    • /
    • 2008
  • In this paper the trust region method is studied and applied in aerodynamic shape optimization. The trust region method is a gradient-based optimization method, but it is not as popular as other methods in engineering computations. Its theory will be explained for unconstrained optimization problems and a trust region subproblem will be solved with the dogleg method. After verifying the trust region method with analytical test problems, it is applied to aerodynamic shape design optimization and the performance of airfoil is improved successfully.

  • PDF

Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework (다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계)

  • Kwon, Hyung-Il;Yi, Seul-Gi;Choi, Seongim;Kim, Keunbae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.173-184
    • /
    • 2013
  • A multi-level design optimization framework for aerodynamic design of rotary wing such as propeller and helicopter rotor blades is presented in this study. Strategy of the proposed framework is to enhance aerodynamic performance by sequentially applying the planform and sectional design optimization. In the first level of a planform design, we used a genetic algorithm and blade element momentum theory (BEMT) based on two-dimensional aerodynamic database to find optimal planform variables. After an initial planform design, local flow conditions of blade sections are analyzed using high-fidelity CFD methods. During the next level, a sectional design optimization is conducted using two dimensional Navier-Stokes analysis and a gradient based optimization algorithm. When optimal airfoil shape is determined at the several spanwise locations, a planform design is performed again. Through this iterative design process, not only an optimal flow condition but also an optimal shape of an EAV propeller blade is obtained. To validate the optimized propeller-blade design, it is tested in wind-tunnel facility with different flow conditions. An efficiency, which is slightly less than the expected improvement of 7% predicted by our proposed design framework but is still satisfactory to enhance the aerodynamic performance of EAV system.

SHAPE OPTIMIZATION OF UCAV FOR AERODYNAMIC PERFORMANCE IMPROVEMENT AND RADAR CROSS SECTION REDUCTION (공력 향상과 RCS 감소를 고려한 무인 전투기의 형상 최적설계)

  • Jo, Y.M.;Choi, S.I.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.56-68
    • /
    • 2012
  • Nowadays, Unmanned Combat Air Vehicle(UCAV) has become an important aircraft system for the national defense. For its efficiency and survivability, shape optimization of UCAV is an essential part of its design process. In this paper, shape optimization of UCAV was processed for aerodynamic performance improvement and Radar Cross Section(RCS) reduction using Multi Objective Genetic Algorithm(MOGA). Lift and induced drag, friction drag, RCS were calculated using panel method, boundary layer theory, Physical Optics(PO) approximation respectively. In particular, calculation applied Radar Absorbing Material(RAM) was performed for the additional RCS reduction. Results are indicated that shape optimization is performed well for improving aerodynamic performance, reducing RCS. Further study will be performed with higher fidelity tools and consider other design segments including structure.

Multi-Point Aerodynamic Design Optimization of DLR F-6 Wing-Body-Nacelle-Pylon Configuration

  • Saitoh, Takashi;Kim, Hyoungjin;Takenaka, Keizo;Nakahashi, Kazuhiro
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.403-413
    • /
    • 2017
  • Dual-point aerodynamic design optimization is conducted for DLR-F6 wing-body-nacelle-pylon configuration adopting an efficient surface mesh movement method for complex junction geometries. A three-dimensional unstructured Euler solver and its discrete adjoint code are utilized for flow and sensitivity analysis, respectively. Considered design conditions are a low-lift condition and a cruise condition in a transonic regime. Design objective is to minimize drag and reduce shock strength at both flow conditions. Shape deformation is made by variation of the section shapes of inboard wing and pylon, nacelle vertical location and nacelle pitch angle. Hicks-Henne shape functions are employed for deformation of the section shapes of wing and pylon. By the design optimization, drag coefficients were remarkably reduced at both design conditions retaining specified lift coefficient and satisfying other constraints. Two-point design results show mixed features of the one-point design results at low-lift condition and cruise conditions.

A Network-Distributed Design Optimization Approach for Aerodynamic Design of a 3-D Wing (3차원 날개 공력설계를 위한 네트워크 분산 설계최적화)

  • Joh, Chang-Yeol;Lee, Sang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.12-19
    • /
    • 2004
  • An aerodynamic design optimization system for three-dimensional wing was developed as a part of the future MDO framework. The present design optimization system includes four modules such as geometry design, grid generation, flow solver and optimizer. All modules were based on commercial softwares and programmed to have automated execution capability in batch mode utilizing built-in script and journaling. The integration of all modules into the system was accomplished through programming using Visual Basic language. The distributed computational environment based on network communication was established to save computational time especially for time-consuming aerodynamic analyses. The distributed aerodynamic computations were performed in conjunction with the global optimization algorithm of response surface method, instead of using usual parallel computation based on domain decomposition. The application of the design system in the drag minimization problem demonstrated considerably enhanced efficiency of the design process while the final design showed reasonable results of reduced drag.

A Study on the Multi-Objective Optimization of Impeller for High-Power Centrifugal Compressor

  • Kang, Hyun-Su;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a method for the multi-objective optimization of an impeller for a centrifugal compressor using fluid-structure interaction (FSI) and response surface method (RSM) was proposed. Numerical simulation was conducted using ANSYS CFX and Mechanical with various configurations of impeller geometry. Each design parameter was divided into 3 levels. A total of 15 design points were planned using Box-Behnken design, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of the DOE were used to find the optimal shape of the impeller. Two objective functions, isentropic efficiency and equivalent stress were selected. Each objective function is an important factor of aerodynamic performance and structural safety. The entire process of optimization was conducted using the ANSYS Design Xplorer (DX). The trade-off between the two objectives was analyzed in the light of Pareto-optimal solutions. Through the optimization, the structural safety and aerodynamic performance of the centrifugal compressor were increased.

Aerodynamic Characteristics and Shape Optimization of Airfoils in WIG Craft Considered Ground Effect (지면효과를 고려한 WIG 선 익형의 공력특성 및 형상최적화)

  • Lee, Ju-Hee;Kim, Byeong-Sam;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1084-1092
    • /
    • 2006
  • Shape optimization of airfoil in WIG craft has been performed by considering the ground effect. The WIG craft should satisfy various aerodynamic characteristics such as lift, lift to drag ratio, and static height stability. However, they show a strong trade-off phenomenon so that it is difficult to satisfy aerodynamic properties simultaneously. Optimization is carried out through the multi-objective genetic algorithm. A multi-objective optimization means that each objective is considered separately instead of weighting. Due to the trade-off, pareto sets and non-dominated solutions can be obtained instead of the unique solution. NACA0015 airfoil is considered as a baseline model, shapes of airfoil are parameterized and rebuilt with four-Bezier curves. There are eighteen design variables and three objective functions. The range of design variables and their resolutions are two primary keys for the successful optimization. By two preliminary optimizations, the variation can be reduced effectively. After thirty evolutions, the non-dominated pareto individuals of twenty seven are obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space.