• 제목/요약/키워드: aerodynamic model

검색결과 1,014건 처리시간 0.027초

팬터그래프 커버형상에 따른 HEMU-400X 항력의 실험적 분석 (Experimental Analysis on Aerodynamic Drag of HEMU-400X as Variations of Pantograph Cover Configurations)

  • 이영빈;곽민호;김규홍;이동호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.88-93
    • /
    • 2011
  • The aerodynamic drag characteristics of HEMU-400X which has been being developed for the maximum speed of 430km/h were analyzed experimentally as the variations of the pantograph cover configurations to reduce the acoustic noise and the aerodynamic drag of the pantograph system. The wind tunnel tests were performed with three pantograph cover models upon 1/20 scaled 5-car model of HEMU-400X. Two kinds of wedge shapes which induce up-flow in the vicinity of the pantograph and one cone shape which reduces the whole train drag were used in order to compare the aerodynamic characteristics as the pantograph cover shape changes. The each axial force of 5 each car was measured at a time with the test velocities, 30, 40, 50, 60m/s. Through the wind tunnel test the base drag forces of HEMU-400x model and the forces by the pantograph cover on the train model were investigated and the aerodynamic drag characteristics of the train model by the pantograph cover configurations were analyzed.

  • PDF

Dynamic response of railway vehicles under unsteady aerodynamic forces caused by local landforms

  • Chen, Zhengwei;Liu, Tanghong;Li, Ming;Yu, Miao;Lu, Zhaijun;Liu, Dongrun
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.149-161
    • /
    • 2019
  • When a railway vehicle runs in crosswinds, the unsteady aerodynamic forces acting on the train induced by the vehicle speed, crosswind velocity and local landforms are a common problem. To investigate the dynamic performance of a railway vehicle due to the influence of unsteady aerodynamic forces caused by local landforms, a vehicle aerodynamic model and vehicle dynamic model were established. Then, a wind-loaded vehicle system model was presented and validated. Based on the wind-loaded vehicle system model, the dynamic response performance of the vehicle, including safety indexes and vibration characteristics, was examined in detail. Finally, the effects of the crosswind velocity and vehicle speed on the dynamic response performance of the vehicle system were analyzed and compared.

Wind tunnel test research on aerodynamic means of the ZG Bridge

  • He, Xiangdong;Xi, Shaozhong
    • Wind and Structures
    • /
    • 제2권2호
    • /
    • pp.119-125
    • /
    • 1999
  • The ZG Bridge(preliminary design), with unfavorable aerodynamic stability characteristics, is a truss-stiffened suspension bridge, its critical wind speed of flutter instability is much lower than that of code requirement, In the present paper, based on both aerostatic and aeroelastic section model wind tunnel test, not only effects of some aerodynamic means on aerodynamic stability of its main girder are investigated, but also such effective aerodynamic means of it as flap and plate-like center stabilizer are concluded.

고속열차 대차 측면 페어링 적용을 통한 공기저항 저감 연구 (A STUDY ON THE AERODYNAMIC DRAG REDUCTION OF HIGH-SPEED TRAIN USING BOGIE SIDE FAIRING)

  • 문지수;김석원;권혁빈
    • 한국전산유체공학회지
    • /
    • 제19권1호
    • /
    • pp.41-46
    • /
    • 2014
  • The aerodynamic drag of high-speed train has been calculated and the effect of bogie side fairing on the aerodynamic drag has been investigated. Computational Fluid Dynamics (CFD) simulation based on steady-state 3 dimensional Navier-Stokes equation has been conducted employing FLUENT 12 and the aerodynamic model of HEMU-430x, the Korean next generation high-speed train under development has been built using GAMBIT 2.4.6. Three types of bogie side fairing configuration, the proto-type without fairing, half-covered fairing to avoid the interference with the bogie frame and full-covered fairing have been adopted to the train model to compare the drag reduction effects of the bogie side fairing configurations and the numerical results yields that the bogie side fairing can reduce the aerodynamic drag of the 6-car trainset up to 7.8%. The aerodynamic drag coefficient of each vehicle as well as the flow structures around the bogie system have also been examined to analyze the reason and mechanism of the drag reduction by bogie side fairing.

Experimental investigation of amplitude-dependent self-excited aerodynamic forces on a 5:1 rectangular cylinder

  • Wang, Qi;Wu, Bo;Liao, Hai-li;Mei, Hanyu
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.73-80
    • /
    • 2022
  • This paper presents a study on amplitude-dependent self-excited aerodynamic forces of a 5:1 rectangular cylinder through free vibration wind tunnel test. The sectional model was spring-supported in a single degree of freedom (SDOF) in torsion, and it is found that the amplitude of the free vibration cylinder model was not divergent in the post-flutter stage and was instead of various stable amplitudes varying with the wind speed. The amplitude-dependent aerodynamic damping is determined using Hilbert Transform of response time histories at different wind speeds in a smooth flow. An approach is proposed to extract aerodynamic derivatives as nonlinear functions of the amplitude of torsional motion at various reduced wind speeds. The results show that the magnitude of A2*, which is related to the negative aerodynamic damping, increases with increasing wind speed but decreases with vibration amplitude, and the magnitude of A3* also increases with increasing wind speed but keeps stable with the changing amplitude. The amplitude-dependent aerodynamic derivatives derived from the tests can also be used to estimate the post-flutter response of 5:1 rectangular cylinders with different dynamic parameters via traditional flutter analysis.

나선형 초고층건물의 공력불안정 진동과 공력감쇠에 관한 연구 (A Study on Aerodynamic Damping and Aeroelastic Instability of Helical-shaped Super Tall Building)

  • 김원술;아키히토 요시다;타무라 유키오;이진학
    • 한국전산구조공학회논문집
    • /
    • 제29권1호
    • /
    • pp.95-103
    • /
    • 2016
  • 본 논문에서는 변위응답 및 가속도 응답의 저감 효과에 있어서, 유리한 형상인 $180^{\circ}$ 나선형(Helical $180^{\circ}$) 초고층건물을 대상으로 풍진동실험을 수행하여 나선형 초고층건물의 공력불안정 진동 특성 및 공력감쇠 특성을 조사하였고, 정방형 초고층건물의 결과와 비교분석 하였다. 본 연구에서의 공력감쇠율은 RD법(random decrement technique)을 이용하여 평가하였다. RD법에 의해 평가된 공력감쇠율은 기존문헌 및 준정상가정이론 결과와 비교 검증하였다. 실험결과, 공력진동 실험결과 $180^{\circ}$ 나선형모형의 풍직각방향에 대한 공력불안정 진동은 발생하지 않는 것이 확인되었다. 정방형과 $180^{\circ}$ 나선형 형상에 대한 공력감쇠율을 살펴보면, X방향에 대한 공력감쇠율은 무차원 풍속이 증가와 비례하여 점진적으로 증가하는 경향이 나타났다. 반면, Y방향에 대한 공력감쇠율은 정방형모형과 매우 다른 양상이 나타나는 것을 알 수 있었다.

이중 다류관 모델을 이용한 Darrieus 터어빈의 공기역학적 특성 해석 (Aerodynamic Characteristic Analysis of the Darrieus Turbine Using Double Multiple Streamtube Model)

  • 김건훈;박경호;정헌생
    • 태양에너지
    • /
    • 제10권1호
    • /
    • pp.47-56
    • /
    • 1990
  • 수직축 다리우스 풍력 터어빈의 공기역학적 특성을 해석코자 날개요소이론과 운동량 이론에 근거하는 이중다류관모델을 정립하여 모델풍동실험과 병행하여 비교분석하였다. 이중 다류관 모델은 아직 수정 보완의 여지는 있으나 터어빈을 통과하는 유동의 변화가 심하지 않은 날개끝속도비나 회전면적비가 작은 경우에는 비교적 정확히 터어빈의 공기역학적 특성을 예측함을 알 수 있었고, 모형풍동실험을 통해 정확한 터어빈 회전수제어로서 각 특성변수들에 대한 영향을 살피었다. 본 연구의 결과로서는 다리우스 터어빈의 설계 및 운전특성 예측에의 응용이 기대될 수 있다.

  • PDF

차세대 고속열차 대차 형상에 따른 공기저항 변화에 대한 실험적 연구 (Experimental Study on Aerodynamic Drag Characteristics by Train Bogie Shape Variation)

  • 곽민호;이영빈;이정욱;김규홍;이동호;정형석;장영일;권혁빈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.14-19
    • /
    • 2011
  • Wind tunnel tests are performed so as to investigate the aerodynamic drag characteristics of HEMU-400x, next generation Korean high speed train. The experiments of 1/20 scaled 5-car train model are done at 30, 40, 50, 60m/s with a normal bogie, a bogie cover, and a streamlined shape. The flat plate with knife edge are installed to minimize the effect of boundary layer of wind tunnel for the train model. The aerodynamic drag reduction was more by a streamlined shape than by a bogie cover from a normal bogie. Based on the experimental results, the aerodynamic drag of HEMU-400x test train(6-car) was predicted. It is prediceted that More bogie cover could reduce more aerodynamic drag of the test train in replacement of normal bogies.

  • PDF

Experimental and numerical aerodynamic investigation of a prototype vehicle

  • Akansu, Selahaddin Orhan;Akansu, Yahya Erkan;Dagdevir, Toygun;Daldaban, Ferhat;Yavas, Feridun
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.811-827
    • /
    • 2015
  • This study presents experimental and numerical aerodynamic investigation of a prototype vehicle. Aerodynamics forces examined which exerted on a prototype. This experimental study was implemented in a wind tunnel for the Reynolds number between $10^5-3.1{\times}10^5$. Numerical aerodynamic analysis of the vehicle is conducted for different Reynolds number by using FLUENT CFD software, with the k-$\varepsilon$ realizable turbulence model. The studied model aims at verifying the aerodynamic forces between experimental and numerical results. After the Reynolds number of $2.8{\times}10^5$, the drag coefficient obtained experimentally becomes independent of Reynolds number and has a value of 0.25.

구매조건부 판토그라프 모델에 대한 공력특성 평가 (Evaluation of the Aerodynamic characteristic on the Pantograph model)

  • 김기남;조용현;고태환;권혁빈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.152-161
    • /
    • 2009
  • This thesis aims to report the result of an evaluation of the aerodynamic characteristic on the purchase conditional pantograph model that has developed for applying to the KTX-I. Development pantograph was derived the result of aerodynamic characteristic through a wind tunnel test. And design modification was proceeded to solve the difference of aerodynamic characteristic by pantograph's operating direction. The verification test and adjustment test about the modified pantograph's aerodynamic characteristic were progressed on the KTX-I. To be corresponded with requirements, the airfoil and spoiler were used.

  • PDF