• Title/Summary/Keyword: aerodynamic load

Search Result 237, Processing Time 0.025 seconds

Estimation of Vehicle Driving-Load with Application to Vehicle Intelligent Cruise Control

  • Kyongsu Yi;Lee, Sejin;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.720-726
    • /
    • 2001
  • This paper describes a vehicle driving-load estimation method for application to vehicle Intelligent Cruise Control (ICC). Vehicle driving-load consists of aerodynamic force, rolling resistance, and gravitational force due to road slope and is unknown disturbance in a vehicle dynamic model. The vehicle driving-load has been estimated from engine and wheel speed measurements using a vehicle dynamic model a least square method. The estimated driving-load has been used in the adaptation of throttle/brake control law. The performance of the control law has been investigated via both simulation and vehicle tests. The simulation and test results show that the proposed control law can provide satisfactory vehicle-to-vehicle distance control performance for various driving situations.

  • PDF

Active load control for wind turbine blades using trailing edge flap

  • Lee, Jong-Won;Kim, Joong-Kwan;Han, Jae-Hung;Shin, Hyung-Kee
    • Wind and Structures
    • /
    • v.16 no.3
    • /
    • pp.263-278
    • /
    • 2013
  • The fatigue load of a turbine blade has become more important because the size of commercial wind turbines has increased dramatically in the past 30 years. The reduction of the fatigue load can result in an increase in operational efficiency. This paper numerically investigates the load reduction of large wind turbine blades using active aerodynamic load control devices, namely trailing edge flaps. The PD and LQG controllers are used to determine the trailing edge flap angle; the difference between the root bending moment and its mean value during turbulent wind conditions is used as the error signal of the controllers. By numerically analyzing the effect of the trailing edge flaps on the wind turbines, a reduction of 30-50% in the standard deviation of the root bending moment was achieved. This result implies a reduction in the fatigue damage on the wind turbines, which allows the turbine blade lengths to be increased without exceeding the designed fatigue damage limit.

50m급 비행선 구조하중 해석

  • Kang, Wang-Gu;Kim, Dong-Min;Lee, Jin-Woo;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.11-18
    • /
    • 2002
  • The structural load analysis of 50m class airship was performed. The airship maneuver condition for analysis was defined. Aerodynamic, inertia and buoyance models were built. Control surface motion to make defined maneuver condition were calculated. Load factors, load, shear and bending moment envelops were developed for full airship and tailwing. Gondola design loads were developed.

  • PDF

Aerodynamic Load Analysis of a Floating Offshore Wind Turbine Considering Platform Periodic Motion (플랫폼의 주기 운동을 고려한 부유식 해상 풍력터빈의 공력 성능 해석)

  • Kim, Youngjin;Yu, Dong Ok;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.5
    • /
    • pp.368-375
    • /
    • 2018
  • In the present study, aerodynamic load analysis for a floating off-shore wind turbine was conducted to examine the effect of periodic platform motion in the direction of 6-DOF on rotor aerodynamic performance. Blade-element momentum method(BEM) was used for a numerical simulation, the unsteady airload effects due to the flow separation and the shed wake were considered by adopting a dynamic stall model based on the indicial response method. Rotor induced downwash was estimated using the momentum theory, coupled with empirical corrections for the turbulent wake states. The periodic platform motions including the translational motion in the heave, sway and surge directions and the rotational motion in the roll, pitch and yaw directions were considered, and each platform motion was applied as a sinusoidal function. For the numerical simulation, NREL 5MW reference wind turbine was used as the target wind turbine. The results showed that among the translation modes, the surge motion has the largest influence on changing the rotor airloads, while the effect of pitch motion is predominant for the rotations.

An Experimental Study on Aerodynamic Characteristics of a Flapping Wing (플래핑 날개의 공력특성에 관한 실험적 연구)

  • Song, Woo-Gil;Chang, Jo-Won;Jeon, Chang-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.8-16
    • /
    • 2009
  • An experimental study was carried out to investigate aerodynamic characteristics on reduced frequency of flapping wings. The half span of the wing is 28cm, and the mean chord length of wing is 10cm. In flight, the Reynolds Number range of birds is about $10^4$, and the reduced frequency during a level flight is 0.25. The experimental variables of present study were set to have similar conditions with the bird flight's one. The freestream velocities in a wind tunnel were 2.50, 3.75 and $5.00^m/s$, and the corresponding Reynolds numbers were $1.7{\times}10^4$, $2.5{\times}10^4$ and $3.3{\times}10^4$, respectively. The wing beat frequencies of an experimental model were 2, 3 and 4Hz, and the corresponding reduced frequency was decided between 0.1 and 0.5. Aerodynamic forces of an experimental flapping model were measured by using 2 axis load-cell. Inertial forces measured in a vacuum chamber were removed from measuring forces in the wind tunnel in order to acquire pure aerodynamic forces. Hall sensors and laser trigger were used to make sure the exact position of wings during the flapping motion. Results show that the ratio of downstroke in a wing beat cycle is increased as a wing beat frequency increases. The instantaneous lift coefficient is the maximum value at the end of downstroke of flapping wing model. It is found that a critical reduced frequency with large lift coefficient is existed near k=0.25.

  • PDF

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

Study on a 500W Class Wind Turbine using a High Efficiency Composite Blades (고효율 복합재 블레이드를 사용한 500W급 풍력터빈에 관한 연구)

  • Kong, Chang-Duk;Choi, Su-Hyun;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.201-208
    • /
    • 2009
  • Recently, the wind energy has been widely used as a renewable energy resource due to lack and environmental issues of the mostly used fossil fuel. This work is to develop a 500W class small wind turbine blade which will be applicable to relatively low speed region like Korea and for the domestic use. For this blade a high efficiency wind turbine blade was designed with the proposing aerodynamic design procedure, and a light and low cost composite structure blade was designed considering fatigue life. Structural analyses including load case study, stress, deformation, buckling and vibration analysis were performed using the Finite Element Method. The fatigue life was estimated using the load spectrum analysis and the Miner rule. In order to evaluate the designed blade, the structural and aerodynamic performance tests were carried out, and the test results were compared with the analysis results.

Probabilistic and spectral modelling of dynamic wind effects of quayside container cranes

  • Su, Ning;Peng, Shitao;Hong, Ningning;Wu, Xiaotong;Chen, Yunyue
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.405-421
    • /
    • 2020
  • Quayside container cranes are important delivery machineries located in the most frontiers of container terminals, where strong wind attacks happen occasionally. Since the previous researches on quayside container cranes mainly focused on the mean wind load and static response characteristics, the fluctuating wind load and dynamic response characteristics require further investigations. In the present study, the aerodynamic wind loads on quayside container cranes were obtained from wind tunnel tests. The probabilistic and spectral models of the fluctuating aerodynamic loads were established. Then the joint probabilistic distributions of dynamic wind-induced responses were derived theoretically based on a series of Gaussian and independent assumption of resonant components. Finally, the results were validated by time domain analysis using wind tunnel data. It is concluded that the assumptions are acceptable. And the presented approach can estimate peak dynamic sliding force, overturning moments and leg uplifts of quayside container cranes effectively and efficiently.

A Study on Manufacturing and Structural Test of Wind Turbine System Blade using Natural Composite (자연섬유 복합재료 풍력 발전 시스템 블레이드 제작 및 구조 시험 연구)

  • Park, Hyun Bum
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.30-35
    • /
    • 2017
  • In this work, a manufacturing and structural test of 1kW class horizontal axis wind turbine blade using natural-fiber composite was performed. The aerodynamic design of blade was performed after investigation on design requirement. The structural design load was investigated after aerodynamic design of blade. And also, structural design of blade was carried out. The structural design of blade was carried out using the simplified methods such as the netting rule and the rule of mixture applied to composite. The structural safety of the designed blade structure is investigated through the various load cases, stress, deformation and buckling analyses using the FEM method. Finally, the blade manufacturing and structural test using natural composite was carried out.

Study on the Aerodynamic Characteristics of an Wing Depending on the Propeller Mounting Position (프로펠러 장착 위치에 따른 날개의 공력 특성 변화 연구)

  • Inseo, Choi;Cheolheui, Han
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • Recently, electric propulsion aircraft with various propeller mounting positions have been under construction. The position of the propeller relative to the wing can significantly affect the aerodynamic performance of the aircraft. Placing the propeller in front of the wing produces a complex swirl flow behind or around the propeller. The up/downwash induced by the swirl flow can alter the wing's local effective angle of attack, causing a change in the aerodynamic load distribution across the wing's spanwise direction. This study investigated the influence of the distance between a propeller and a wing on the aerodynamic loads on the wing. The swirl flow generated by the propeller was modelled using an actuator disk theory, and the wing's aerodynamics were analysed with the VSPAERO tool. Results of the study were compared to wind tunnel test data and established that both axial and spanwise distance between the propeller and the wing positively affect the wing's lift-to-drag ratio. Specifically, it was observed that the lift-to-drag ratio increases when the propeller is positioned higher than the wing.