As part of a Department of Defense Grand Challenge Project, advanced high performance computing (HPC) time-accurate computational fluid dynamics (CFD) techniques have been developed and applied to a new area of aerodynamic research on microjets for control of small and medium caliber projectiles. This paper describes a computational study undertaken to determine the aerodynamic effect of flow control in the afterbody regions of spin-stabilyzed projectiles at subsonic and low transonic speeds using an advanced scalable unstructured flow solver in various parallel computers such as the IBM SP4 and Linux Cluster. High efficiency is achieved for both steady and time-accurate unsteady flow field simulations using advanced scalable Navier-Stokes computational techniques. Results relating to the code's portability and its performance on the Linux clusters are also addressed. Numerical simulations with the unsteady microjets show the jets to substantially alter the flow field both near the jet and the base region of the projectile that in turn affects the forces and moments even at zero degree angle of attack. The results have shown the potential of HPC CFD simulations on parallel machines to provide to provide insight into the jet interaction flow fields leading to improve designs.
접는 미사일 조종날개의 공력탄성학적 특성을 조사하였다. 접는 미사일 조종날개는 2차원 익형 모델로 가정하였다. 초음속 DPM을 이용하여 초음속 비정상 공기력을 계산하였으며, 최소 상태 변수 근사법을 이용하여 비정상 공기력을 근사화하였다. 선형 및 비선형 플러터 해석을 위해 근궤적법과 시간적분법을 사용하였다. 비선형 플러터 해석을 위해 전개부의 힌지는 비대칭 이선형 스프링으로 가정하였으며, 기술함수를 이용하여 선형화하였다. 플러터 해석으로부터, 비선형 파라미터가 공력탄성학적 특성에 미치는 영향을 조사하였다.
This paper presents some examples of active control of flow-induced vibration using piezoelectric actuators. The flutter phenomenon, which is the dynamic instability of structure due to mutual interaction among inertia, stiffness, and aerodynamic forces, may cause catastrophic structural failure, and therefore the active flutter suppression is one of the main objectives of the aeroelastic control. Active flutter control has been numerically and experimentally studied for swept-back lifting surfaces using piezoelectric actuation. A finite element method, a panel aerodynamic method, and the minimum state space realization are involved in the development of the governing equation, which is efficiently used for the analysis of the system and design of control laws with modern control framework. The active control suppressed flow-induced vibrations and extended the flutter speed around by 10%. Another representative flow-induced vibration phenomenon is the oscillation of blunt bodies due to the vortex shedding. In general, it is quite difficult to set up the numerical model because of the strong non-linearity of the vortex shedding structure. Therefore, we applied adaptive positive position feedback controller, which requires no pre-determined model of the plant, and successfully suppressed the flow-induced vibration.
Active flow control, in the form of steady and unsteady momentum injection via jet blowing was studied. A jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin slot. The normal and drag forces were measured with leading edge or trailing edge blowing Jet and compared with the results obtained with no blowing. The blowing jet has been shown to improve the aerodynamic performance of the airfoil. The steady jet proved more effective than pulsating jet in these experimental conditions. Furthermore for the case of leading edge steady blowing jet, the alleviation of non-linearity in the normal force curve slope can be seen at higher angles of attack. No effective trailing edge jet was observed in this highly separated flow. This shows that the stall control is highly depends on the characteristics of the boundary layer near the jet slot.
Telenta, Marijo;Batista, Milan;Biancolini, M.E.;Prebil, Ivan;Duhovnik, Jozef
Wind and Structures
/
제20권1호
/
pp.75-93
/
2015
This work is focused on a parametric numerical study of the barrier's bar inclination shelter effect in crosswind scenario. The parametric study combines mesh morphing and design of experiments in automated manner. Radial Basis Functions (RBF) method is used for mesh morphing and Ansys Workbench is used as an automation platform. Wind barrier consists of five bars where each bar angle is parameterized. Design points are defined using the design of experiments (DOE) technique to accurately represent the entire design space. Three-dimensional RANS numerical simulation was utilized with commercial software Ansys Fluent 14.5. In addition to the numerical study, experimental measurement of the aerodynamic forces acting on a vehicle is performed in order to define the critical wind disturbance scenario. The wind barrier optimization method combines morphing, an advanced CFD solver, high performance computing, and process automaters. The goal is to present a parametric aerodynamic simulation methodology for the wind barrier shelter that integrates accuracy and an extended design space in an automated manner. In addition, goal driven optimization is conducted for the most influential parameters for the wind barrier shelter.
Multivariate fluctuating pressures acting on a 2:1 rectangular section (2-D) with dimensions of 9 cm by 4.5 cm has been studied using wind tunnel experiments under uniform and smooth flow condition for various angles of wind incidence. Based on the variation of mean pressure coefficient distributions along the circumference of the rectangular section with angle of wind incidence, and with the aid of skin friction coefficients, three distinct flow regimes with two transition regimes have been identified. Further, variations of mean drag and lift coefficients, Strouhal number with angles of wind incidence have been studied. The applicability of Universal Strouhal number based on vortex street similarity of wakes in bluff bodies to the 2:1 rectangular section has been studied for different angles of wind incidence. The spatio-temporal correlation features of the measured pressure data have been studied using Proper Orthogonal Decomposition (POD) technique. The contribution of individual POD modes to the aerodynamic force components, viz, drag and lift, have been studied. It has been demonstrated that individual POD modes can be associated to different physical phenomena, which contribute to the overall aerodynamic forces.
The breakup characteristics of liquid sheets formed by the impinging and swirl type injectors were studied as increasing the Weber number (or injection condition) and the ambient gas pressure to 4.0.MPa. In the case of impinging type injector. we compared the changes of breakup lengths between laminar and turbulent sheets. which are formed by the impingement of laminar and turbulent jets. respectively. The results showed that both sheets expand as increasing the injection velocity irrespective of the ambient gas density when the gas based Weber number is low. When the Weber number is high, however, the breakup of turbulent sheet depends on the hydraulic force of jets as well as the aerodynamic force of ambient gas which determines the breakup of laminar sheet. Using the experimental results. we could suggest empirical models on the breakup lengths of laminar and turbulent sheets. In the case of swirl type injector. as $We_l$, and ambient gas density increased, the disturbances on the annular liquid sheet surface were amplified by the increase of the aerodynamic forces. and thus the liquid sheet disintegrated near from the injector exit. Finally, the measured breakup length of swirl type injector according to the ambient gas density and $We_l$, was compared with the result by the linear instability theory. We found that the corrected breakup length relation derived from linear instability theory considering the attenuation of sheet thickness agrees well with our experimental results.
A dragonfly inspired flapping wing is investigated in this paper. The flapping wing is actuated from the root by a PZT-5H and PZN-7%PT single crystal unimorph in the piezofan configuration. The non-linear governing equations of motion of the smart flapping wing are obtained using the Hamilton's principle. These equations are then discretized using the Galerkin method and solved using the method of multiple scales. Dynamic characteristics of smart flapping wings having the same size as the actual wings of three different dragonfly species Aeshna Multicolor, Anax Parthenope Julius and Sympetrum Frequens are analyzed using numerical simulations. An unsteady aerodynamic model is used to obtain the aerodynamic forces. Finally, a comparative study of performances of three piezoelectrically actuated flapping wings is performed. The numerical results in this paper show that use of PZN-7%PT single crystal piezoceramic can lead to considerable amount of wing weight reduction and increase of lift and thrust force compared to PZT-5H material. It is also shown that dragonfly inspired smart flapping wings actuated by single crystal piezoceramic are a viable contender for insect scale flapping wing micro air vehicles.
Rational Functions are used to express the self-excited aerodynamic forces acting on a flexible structure for use in time-domain flutter analysis. The Rational Function Approximation (RFA) approach involves obtaining of these Rational Functions from the frequency-dependent flutter derivatives by using an approximation. In the past, an algorithm was developed to directly extract these Rational Functions from wind tunnel section model tests in free vibration. In this paper, an algorithm is presented for direct extraction of these Rational Functions from section model tests in forced vibration. The motivation for using forced-vibration method came from the potential use of these Rational Functions to predict aerodynamic loads and response of flexible structures at high wind speeds and in turbulent wind environment. Numerical tests were performed to verify the robustness and performance of the algorithm under different noise levels that are expected in wind tunnel data. Wind tunnel tests in one degree-of-freedom (vertical/torsional) forced vibration were performed on a streamlined bridge deck section model whose Rational Functions were compared with those obtained by free vibration for the same model.
Large Eddy Simulations (LES) were carried out to investigate the aerodynamic characteristics of a rectangular cylinder with side ratio B/D=5 at Reynolds number Re=22,000 (based on cylinder thickness). Particular attention was devoted to the effects of velocity shear in the oncoming flow. Time-averaged and unsteady flow patterns around the cylinder were studied to enhance understanding of the effects of velocity shear. The simulation results showed that the Strouhal number has no significant variation with oncoming velocity shear, while the peak fluctuation frequency of the drag coefficient becomes identical to that of the lift coefficient with increase in velocity shear. The intermittently-reattached flow that features the aerodynamics of the 5:1 rectangular cylinder in non-shear flow becomes more stably reattached on the high-velocity side, and more stably separated on the low-velocity side. Both the mean and fluctuating drag coefficients increase slightly with increase in velocity shear. The mean and fluctuating lift and moment coefficients increase almost linearly with velocity shear. Lift force acts from the high-velocity side to the low-velocity side, which is similar to that of a circular cylinder but opposite to that of a square cylinder under the same oncoming shear flow.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.