• Title/Summary/Keyword: aerodynamic control

Search Result 489, Processing Time 0.029 seconds

Aerodynamic Flutter Control for Typical Girder Sections of Long-Span Cable-Supported Bridges

  • Yang, Yongxin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.205-217
    • /
    • 2009
  • Aerodynamic flutter control for long-span cable-supported bridges was investigated based on three basic girder sections, i.e. streamlined box girder section, box girder section with cantilevered slabs and two-isolated-girder section. Totally four kinds of aerodynamic flutter control measures (adding fairings, central-slotting, adding central stabilizers and adjusting the position of inspection rail) were included in this research. Their flutter control effects on different basic girder sections were evaluated by sectional model or aeroelastic model wind tunnel tests. It is found that all basic girder sections can get aerodynamically more stabled with appropriate aerodynamic flutter control measures, while the control effects are influenced by the details of control measures and girder section configurations. The control effects of the combinations of these four kinds of aerodynamic flutter control measures, such as central-slotting plus central-stabilizer, were also investigated through sectional model wind tunnel tests, summarized and compared to the flutter control effect of single measure respectively.

Study of Flight Simulation using Real-Time Aerodynamic Model (실시간 공력모델을 이용한 비행 시뮬레이션 연구)

  • Lee, Chang Ho;Park, Young Min;Choi, Hyoung Sik
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.49-54
    • /
    • 2015
  • Accurate aerodynamic data is required for the flight simulation or control logic design of aircraft. The aerodynamic look-up table has been used widely to provide aerodynamic forces and moments for given flight conditions. In this paper, we replace the aerodynamic look-up table with real-time aerodynamic model which calculates aerodynamic forces and moments of quasi-steady flow directly for given flight conditions and control surface deflections. Flight simulations are conducted for the low-speed small UAV using real-time aerodynamic model, and responses of the UAV are predicted successfully for inputs of control surfaces.

A Study on Properties of Torque Control for Wind Turbine (풍력터빈 토크제어의 특성 고찰)

  • Lim, Chae-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1157-1162
    • /
    • 2009
  • The aerodynamic torque and power caused by the interaction between the wind and blade of wind turbine are highly nonlinear. For this reason, the overall dynamic behaviors of wind turbine have nonlinear characteristics. The aerodynamic nonlinearity also affects properties of torque control for wind turbine. In this paper, the nonlinear aerodynamic property according to the wind speed below rated power and its effects on the torque control system are investigated. Nonlinear parameter representing change of aerodynamic torque with respect to rotor speed is obtained by linearization technique. Effects of this aerodynamic nonlinear parameter on the closed-loop torque system with PI controller for an 1.5 MW wind turbine are presented.

Mixed Control of Agile Missile with Aerodynamic Fin and Thrust Vectoring Control (유도탄의 유도명령 추종을 위한 혼합제어기 설계 : 공력 및 추력벡터제어)

  • 이호철;최용석;송택렬;송찬호;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.658-668
    • /
    • 2004
  • This paper is concerned with a control allocation strategy using the dynamic inversion and the pseudo inverse control which generates the nominal control input trajectories. In addition, an autopilot design method is proposed by using time-varying control technique which is time-varying version of the pole placement of linear time-invariant system for an agile missile with aerodynamic fin and thrust vectoring control. The control allocation proposed in this paper is capable of extracting the maximum performance by combining each control effector, aerodynamic fin and thrust vectoring control. The adopted time-varying control technique for the autopilot design enhances the robustness of the tracking performance for a reference command. The main results are validated through the nonlinear simulations with aerodynamic data.

Mixed Control of Agile Missile with Aerodynamic fin and Side Thrust Control (유도탄의 유도명령 추종을 위한 혼합제어기 설계: 공력 및 측추력제어)

  • 최용석;이호철;송택렬;송찬호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.947-955
    • /
    • 2004
  • This paper is concerned with a mixed control with aerodynamic fin and side thrust control applied to an agile missile using a dynamic inversion and a time-varying control technique. The nonlinear dynamic inversion method with the weighting function allocates the desired control inputs(aerodynamic fin and side thrust control) to achieve a reference command, and the time-varying control technique plays the role to guarantee the robustness for the uncertainties. The proposed schemes are validated by nonlinear simulations with aerodynamic data.

Stability Research on Aerodynamic Configuration Design and Trajectory Analysis for Low Altitude Subsonic Unmanned Air Vehicle

  • Rafique, Amer Farhan;He, LinShu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.690-699
    • /
    • 2008
  • In this paper a conventional approach for design and analysis of subsonic air vehicle is used. First of all subsonic aerodynamic coefficients are calculated using Computational Fluid Dynamics(CFD) tools and then wind-tunnel model was developed that integrates vehicle components including control surfaces and initial data is validated as well as refined to enhance aerodynamic efficiency of control surfaces. Experimental data and limited computational fluid dynamics solutions were obtained over a Mach number range of 0.5 to 0.8. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is comparable to previously tested subsonic vehicle models. Mathematical model of the dynamic equations in 6-Degree of Freedom(DOF) is then simulated using MATLAB/SIMULINK to simulate trajectory of vehicle. Effect of altitude on range, Mach no and stability is also shown. The approach presented here is suitable enough for preliminary conceptual design. The trajectory evaluation method devised accurately predicted the performance for the air vehicle studied. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of similar air vehicle simulations. We execute a set of example problems which solve the dynamic equations to find the aircraft trajectory given specified control inputs.

  • PDF

Effect of Ice accretion on the aerodynamic characteristics of wind turbine blades

  • Sundaresan, Aakhash;Arunvinthan, S.;Pasha, A.A.;Pillai, S. Nadaraja
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.205-217
    • /
    • 2021
  • Cold regions with high air density and wind speed attract wind energy producers across the globe exhibiting its potential for wind exploitation. However, exposure of wind turbine blades to such cold conditions bring about devastating impacts like aerodynamic degradation, production loss and blade failures etc. A series of wind tunnel tests were performed to investigate the effect of icing on the aerodynamic properties of wind turbine blades. A baseline clean wing configuration along with four different ice accretion geometries were considered in this study. Aerodynamic force coefficients were obtained from the surface pressure measurements made over the test model using MPS4264 Simultaneous pressure scanner. 3D printed Ice templates featuring different ice geometries based on Icing Research Tunnel data is utilized. Aerodynamic characteristics of both the clean wing configuration and Ice accreted geometries were analysed over a wide range of angles of attack (α) ranging from 0° to 24° with an increment of 3° for three different Reynolds number in the order of 105. Results show a decrease in aerodynamic characteristics of the iced aerofoil when compared against the baseline clean wing configuration. The key flow field features such as point of separation, reattachment and formation of Laminar Separation Bubble (LSB) for different icing geometries and its influence on the aerodynamic characteristics are addressed. Additionally, attempts were made to understand the influence of Reynolds number on the iced-aerofoil aerodynamics.

Suppression of bridge flutter by passive aerodynamic control method (교량 플러터의 공기역학적 수동제어)

  • Kwon S.-D.;Jung S.;Chang S.-P.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.435-438
    • /
    • 2002
  • In this study, a new passive aerodynamic control method is proposed. Control plate which is oscillated by TMD-like mechanism makes flutter stabilizing airflow. Effectiveness of proposed model is verified by experimental and analytical study. In addition, various parameters of the proposed system are investigated. Applicability to long span bridge is also examined. According to the research results, proposed model is very effective in suppressing flutter, and it also shows remarkable robustness.

  • PDF

Flutter and Buffeting Control of Long-span Suspension Bridge by Passive Flaps: Experiment and Numerical Simulation

  • Phan, Duc-Huynh;Nguyen, Ngoc-Trung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.46-57
    • /
    • 2013
  • Flutter stability and buffeting response have been the topics of most concern in the design state of long-span suspension bridges. Among approaches towards the aerodynamic stability, the aerodynamic-based control method which uses control surfaces to generate forces counteracting the unstable excitations has shown to be promising. This study focused on the mechanically controlled system using flaps; two flaps were attached on both sides of a bridge deck and were driven by the motions of the bridge deck. When the flaps moved, the overall cross section of the bridge deck containing these flaps was continuously changing. As a consequence, the aerodynamic forces also changed. The efficiency of the control was studied through the numerical simulation and experimental investigations. The values of quasi-steady forces, together with the experimental aerodynamic force coefficients, were proposed in the simulation. The results showed that the passive flap control can, with appropriate motion of the flaps, solve the aerodynamic instability. The efficiency of the flap control on the full span of a simple suspension bridge was also carried out. The mode-by-mode technique was applied for the investigation. The results revealed that the efficiency of the flap control relates to the mode number, the installed location of the flap, and the flap length.

Autopilot Design for Agile Missile with Aerodynamic Fin and Side Thruster

  • Choi, Yong-Seok;Lee, Ho-Chul;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.508-513
    • /
    • 2003
  • This paper is concerned with a mixed control with aerodynamic fin and side thrusters applied to an agile missile using two-time scale dynamic inversion and linear time-varying control technique. The nonlinear dynamic inversion method with the weighting function allocates the desired control inputs (aerodynamic fin and side thrusters) to track a reference trajectory, and the time-varying control technique guarantees the robustness for the uncertainties. Closed-loop stability is achieved by the assignment of the extended-mean of these linear time-varying eigenvalues to the left half complex plane. The proposed schemes are validated by nonlinear simulations.

  • PDF