• 제목/요약/키워드: aerodynamic characteristic

검색결과 129건 처리시간 0.026초

고속열차의 선두부 형상에 따른 공력특성 변화 (Aerodynamic Characteristics for various front shapes of High Speed Train)

  • 이승철;김사랑;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.49-54
    • /
    • 1995
  • A numerical analysis on the effect of the front shape on the aerodynamic characteristics of HST model is made, using FVM based general purpose 3D Navier-Stokes eq. solver, TURBO-3D program. Numerical solutions are compared with each case of different front shape for HST model. The result shows a good quantitative aerodynamic characteristic tendencies for variation of front shape of HST. Thus it may be used as a basis in the design of the shape of real HST.

  • PDF

근긴장성 발성장애와 내전형 연축성 발성장애의 공기역학적 특성 비교 (A Comparison of Aerodynamic Characteristics in Muscle Tension Dysphonia and Adductor Spasmodic Dysphonia)

  • 허정화;송기범;최양규
    • 말소리와 음성과학
    • /
    • 제5권4호
    • /
    • pp.63-70
    • /
    • 2013
  • The purpose of this study is to show the aerodynamic characteristics and differences in muscle tension dysphonia and adductor spasmodic dysphonia to predict factors which will provide additional information while preparing for the objective examination standard to distinguish the two dysphonias. Forty-eight individuals diagnosed with muscle tension dysphonia and adductor spasmodic dysphonia participated in this study. PAS was used in order to find the aerodynamic characteristics for the two dysphonias. The outcomes of this study show that the airflow variation and glottal resistance of the two groups showed noticeable differences. This study concludes that the aerodynamic characteristics may be used as additional information on diverse evaluations to classify muscle tension dysphonia and adductor spasmodic dysphonia.

한국형 고속전철용 판토그라프의 설계 및 제작 (The Design and Manufacture of Pantograph for Korean High Speed Train)

  • 김휘준;박수홍;정경렬;배정찬
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1223-1228
    • /
    • 2001
  • We have been developing the pantograph for Korean High Speed Train for the last five years. To fulfil the following requirements at designed speed of 350km/h : 1) contact loss less than 1 %, 2) aerodynamic noise less than 91dB, 3) average uplift force less than 200N, the pantograph has been modified two times since the first prototype pantograph was manufactured, By means of the following up characteristic test, low speed wind tunnel test, and high speed wind tunnel test for the prototype pantographs, we found that the aerodynamic uplift force did not exceed l60N at speed up to 350km/h and the aerodynamic noise was less than 88dB, that the following up characteristics of the prototype pantograph was excellent.

  • PDF

Transiting test method for galloping of iced conductor using wind generated by a moving vehicle

  • Guo, Pan;Wang, Dongwei;Li, Shengli;Liu, Lulu;Wang, Xidong
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.155-170
    • /
    • 2019
  • This paper presents a novel test method for the galloping of iced conductor using wind generated by a moving vehicle which can produce relative wind field. The theoretical formula of transiting test is developed based on theoretical derivation and field test. The test devices of transiting test method for aerodynamic coefficient and galloping of an iced conductor are designed and assembled, respectively. The test method is then used to measure the aerodynamic coefficient and galloping of iced conductor which has been performed in the relevant literatures. Experimental results reveal that the theoretical formula of transiting test method for aerodynamic coefficient of iced conductor is accurate. Moreover, the driving wind speed measured by Pitot tube pressure sensors, as well as the lift and drag forces measured by dynamometer in the transiting test are stable and accurate. Vehicle vibration slightly influences the aerodynamic coefficients of the transiting test during driving in ideal conditions. Results of transiting test show that the tendencies of the aerodynamic coefficient curve are generally consistent with those of the wind tunnel tests in related studies. Meanwhile, the galloping is fairly consistent with that obtained through the wind tunnel test in the related literature. These studies validate the feasibility and effectiveness of the transiting test method. The present study on the transiting test method provides a novel testing method for research on the wind-resistance of iced conductor.

Measured aerodynamic coefficients of without and with spiked blunt body at Mach 6

  • Kalimuthu, R.;Mehta, R.C.;Rathakrishnan, E.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권3호
    • /
    • pp.225-238
    • /
    • 2019
  • A spike attached to a blunt nosed body significantly alters its flow field and influences the aerodynamic coefficients at hypersonic speed. The basic body is an axisymmetric, with a hemisphere nose followed by a cylindrical portion. Five different types of spikes, namely, conical aerospike, hemisphere aerospike, flat-face aerospike, hemisphere aerodisk and flat-face aerodisk are attached to the basic body in order to assess the aerodynamic characteristic. The spiked blunt body without the aerospike or aerodisk has been set to be a basic model. The coefficients of drag, lift and pitching moment were measured with and without blunt spike body for the length-to-diameter ratio (L/D) of 0.5, 1.0, 1.5 and 2.0, at Mach 6 and angle of attack up to 8 degrees using a strain gauge balance. The measured forces and moment data are employed to determine the relative performance of the aerodynamic with respect to the basic model. A maximum of 77 percent drag reduction was achieved with hemisphere aerospike of L/D = 2.0. The comparison of aerodynamic coefficients between the basic model and the spiked blunt body reveals that the aerodynamic drag and pitching moment coefficients decrease with increasing the L/D ratio and angle of attack but the lift coefficient has increasing characteristics.

Numerical calculations of aerodynamic performance for ATM train at crosswind conditions

  • Rezvani, Mohammad Ali;Mohebbi, Masoud
    • Wind and Structures
    • /
    • 제18권5호
    • /
    • pp.529-548
    • /
    • 2014
  • This article presents the unsteady aerodynamic performance of crosswind stability obtained numerically for the ATM train. Results of numerical investigations of airflow past a train under different yawing conditions are summarized. Variations of occurrence flow angle from parallel to normal with respect to the direction of forward train motion resulted in the development of different flow patterns. The numerical simulation addresses the ability to resolve the flow field around the train subjected to relatively large yaw angles with three-dimensional Reynolds-averaged Navier-Stokes equations (RANS). ${\kappa}-{\varepsilon}$ turbulence model solved on a multi-block structured grid using a finite volume method. The massively separated flow for the higher yaw angles on the leeward side of the train justifies the use of RANS, where the results show good agreement with verification results. A method of solution is presented that can predict all aerodynamic coefficients and the wind characteristic curve at variety of angles at different speed.

Pressure measurements on inclined square prisms

  • Hu, Gang;Tse, K.T.;Kwok, K.C.S.;Chen, Z.S.
    • Wind and Structures
    • /
    • 제21권4호
    • /
    • pp.383-405
    • /
    • 2015
  • This study investigated aerodynamic characteristics of an inclined square prism experimentally. Pressure measurements were performed on a static square prism with a series of inclinations including forward inclinations (inclined to the upwind direction) and backward inclinations (inclined to the downwind direction). The prism with a vertical attitude was also tested for comparisons. Based on the pressure data, influences of the inclinations on aerodynamic characteristics (e.g., force coefficients, pressure distributions on the surfaces, and vortex shedding features) of the square prism were evaluated in detail. The results show that the inclinations have significant effects on these aerodynamic characteristics. Furthermore, the influences of the forward and backward inclinations are quite different.

Stability Research on Aerodynamic Configuration Design and Trajectory Analysis for Low Altitude Subsonic Unmanned Air Vehicle

  • Rafique, Amer Farhan;He, LinShu
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.690-699
    • /
    • 2008
  • In this paper a conventional approach for design and analysis of subsonic air vehicle is used. First of all subsonic aerodynamic coefficients are calculated using Computational Fluid Dynamics(CFD) tools and then wind-tunnel model was developed that integrates vehicle components including control surfaces and initial data is validated as well as refined to enhance aerodynamic efficiency of control surfaces. Experimental data and limited computational fluid dynamics solutions were obtained over a Mach number range of 0.5 to 0.8. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is comparable to previously tested subsonic vehicle models. Mathematical model of the dynamic equations in 6-Degree of Freedom(DOF) is then simulated using MATLAB/SIMULINK to simulate trajectory of vehicle. Effect of altitude on range, Mach no and stability is also shown. The approach presented here is suitable enough for preliminary conceptual design. The trajectory evaluation method devised accurately predicted the performance for the air vehicle studied. Formulas for the aerodynamic coefficients for this model are constructed to include the effects of several different aspects contributing to the aerodynamic performance of the vehicle. Characteristic parameter values of the model are compared with those found in a different set of similar air vehicle simulations. We execute a set of example problems which solve the dynamic equations to find the aircraft trajectory given specified control inputs.

  • PDF

에어컨 임펠러의 파손 거동에 관한 실험 및 수치적 연구 (An Experimental and Numerical Study on the Fracture Behavior of Air conditioner Impellers)

  • 고병갑;이성철
    • 한국산학기술학회논문지
    • /
    • 제10권12호
    • /
    • pp.3533-3539
    • /
    • 2009
  • 에어컨 임펠러는 에어컨에 장착되어지는 부품으로서 모터 구동에 의하여 차가운 바람을 실내로 유입되도록 해주는 부분이다. 본 연구에서는 임펠러의 파손 원인을 수치적인 방법에 의하여 규명하고, 공진에 의한 파손 여부를 평가한다. 임펠러의 공진 여부를 판단하기 위하여 임펠러의 고유진동수와 Aerodynamic force에 의한 특성 주파수를 비교한다. 먼저, 임펠러의 고유진동수를 알기 위하여 모드 실험과 수치 계산을 병행한다. 즉, 구조 해석용 상용 소프트웨어인 ANSYS를 이용하여 고유진동수와 모드 형을 계산하고, 이를 확인하기 위하여 실험적 주파수 분석을 수행한다. 공진 현상의 원인이 되는 외력에 대하여 임펠러 Blade에 작용하는 Aerodynamic force를 구하여야 하며, 본 연구에서는 V.E.M.(Vortex Element Method)에 근거한 유동 해석 프로그램을 수행하여 Aerodynamic force에 의한 특성 주파수를 얻는다.

재진입 비행체의 A/L 단계 공력특성과 기준궤적 설계 (Aerodynamic Characteristic and Reference Trajectory Design of A/L Phase for the Re-Entry Vehicle)

  • 양장식;백조하;민찬오;김종훈;이대우
    • 한국항공우주학회지
    • /
    • 제36권8호
    • /
    • pp.753-760
    • /
    • 2008
  • 본 연구는 재진입 비행체인 Hope-X의 공력특성과 A/L 단계에 있어서 기준궤적 생성에 관한 것으로서 A/L 단계의 궤적생성을 위해서는 우선적으로 Hope-X의 양력계수와 항력계수가 필요하다. 이를 위해서 상용 유동해석 코드인 Fluent를 사용하여 Hope-X의 유동특성을 해석하였다. A/L 단계는 기준 궤적은 개념적으로 3개의 세부단계 : 기체 안정성을 위한 Steepglide Slope 단계, 안전한 착륙을 위한 Flare Maneuver 단계, 이 두 단계를 자연스럽게 연결시키는 Circular Flare단계로 이루어진다. 기준 궤적은 공력계수와 기체의 운동 특성을 고려하여 기하학적 경로식에 의한 각 단계의 경로각을 결정하는 방법을 통하여 생성된다.