• Title/Summary/Keyword: aerobic-anaerobic conditions

Search Result 195, Processing Time 0.024 seconds

Dynamics Behavior of Phage-Host System Related to Microlunatus phosphovorus in Activated Sludge with Host Inoculation

  • Lee, Sang-Hyon;Otawa, Kenichi;Onuki, Motoharu;Satoh, Hiroyasu;Mino, Takashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1518-1522
    • /
    • 2006
  • In the present study, it was observed how the phage-host system that is naturally reproduced in activated sludge is affected by the host inoculation. The system of Microlunatus phosphovorus and its phages was selected as the phage-host system native to an activated sludge system operated for 19 days under sequencing anaerobic-aerobic conditions with glutamate as the main carbon source. The phage-host system related to M. phosphovorus was monitored by plaque assay for the phages and by fluorescent in situ hybridization (FISH) for the bacterial host. In addition, the whole phage structure was also monitored by pulsed-field gel electrophoresis (PFGE). During the first 9 days, the phage-host system was more or less steady at approx. 9% (FISH/ DAPI) for M. phosphovorus and approx. 10,000 PFU/ml for its lytic phages. Microlunatus phosphovorus JCM9379 was inoculated into the activated sludge on day 10. Right after the inoculation, M. phosphovorus was approx. 24% (FISH/DAPI) whereas its lytic phages dropped down to approx. 500 PFU/ ml. After the host inoculation (within 9 days), however, the phage-host system eventually reverted to its original level in each population. On the other hand, the whole phage structure was not significantly changed by M. phosphovorus inoculation but stable throughout the process operation. Only the minor change that four phage groups gradually became abundant after the host inoculation was observed.

Stability of Matrine and Oxymatrine from the Biopesticide from Sophora flavescens under Aquatic and Soil Environment (고삼 추출물을 주성분으로 하는 유기농자재의 alkaloid계 살충성분 2종의 토양 및 수계 노출 안정성)

  • Kim, Jin Hyo;Choi, Geun-Hyoung;Lim, Sung-Jin;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • BACKGROUND: The stabilities of the two alkaloidal insecticides of S. flavescens including matrine and oxymatrine are important factor to establish expiry date and usage manual for crop protection. However, the environmental stability of the compounds had not been studied with the extract and its commercial biopesticide. METHODS AND RESULTS: The environmental stabilities of the two alkaloids were performed with extract of S. flavescens, and its two commercial biopesticides both in controlled aquatic and soil conditions. The half-lives of the total matrines for the extract and its two commercial biopesticides were estimated over 200 days both under aerobic and anaerobic water condition. Under dry soil condition, the initial decay rates of the matrines were calculated 0.0804-0.1275 ($t_{1/2}$ 5.4-8.6 days), and the half-lives under wet soil condition were calculated 33.0-231 days. Total soil bacteria on the wet soil ranged 6.0-8.0 log CFU/g-soil during the experiments period. CONCLUSION: The aquatic mixture of the extract showed excellent stability both with the extract and its biopesticides, however, the stability of soil mixture were shorter than the aquatic mixture, suggesting that soil metal consider as a catalyst for the degradation of the two alkaloids.

Study on the Effects of Supplemented Factors on the Production of Vitamin $B_{12}$ by Propionibacterium shermanii (Propionibacterium shermanii에 의한 비타민 $B_{12}$의 생성에 영향을 미치는 배지첨가물들에 대한 연구)

  • Kim, Ji-Young;Kim, Kong-Hwan;Kim, Kyoung-Ja;Goo, Yang-Mo
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.614-620
    • /
    • 1994
  • Following the study on the fermentation conditions influencing the production of vitamin $B_{12}$ by Propionibacterium shermanii(Korean J Biotechnol. Bioeng. 7,126-131, 1992), the effects of some factors supplemented in the medium on the production of vitamin $B_{12}$ were studied. Maximum production of vitamin $B_{12}$ was observed when $Co^{+2}$ was supplemented at the concentration of 2-4 ppm in the fermentation medium. Increase of the supplemented $Co^{+2}$ to 12 ppm did not inhibit the growth of the organism, but it accelerated the lysis of the organism. In the literature, peptone was reported to activate the biosynthesis of vitamin $B_{12}$. Examination of the effect of peptone on the growth and the production of vitamin $B_{12}$ showed that at early stage more vitamin$B_{12}$ was observed in the supplemented medium, but no difference was observed in the later stage of fermentation. Examination of the time for addition and the amount of 5,6-dimethylbenzimidazole, a precursor known to influence the production of vitamin $B_{12}$, showed that a maximum yield of vitamin $B_{12}$ was observed when 15 mg/L was added to the fermentation medium after 2 days' incubation. The effect was comparable with the increase of the production of vitamin $B_{12}$ when the fermentation condition was changed to aerobic condition after 2 days' culture under anaerobic condition.

  • PDF

Green synthesis of silver nanoparticles to the microbiological corrosion deterrence of oil and gas pipelines buried in the soil

  • Zhi Zhang;Jingguo Du;Tayebeh Mahmoudi
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.355-366
    • /
    • 2023
  • Biological corrosion, a crucial aspect of metal degradation, has received limited attention despite its significance. It involves the deterioration of metals due to corrosion processes influenced by living organisms, including bacteria. Soil represents a substantial threat to pipeline corrosion as it contains chemical and microbial factors that cause severe damage to water, oil, and gas transmission projects. To combat fouling and corrosion, corrosion inhibitors are commonly used; however, their production often involves expensive and hazardous chemicals. Consequently, researchers are exploring natural and eco-friendly alternatives, specifically nano-sized products, as potent corrosion inhibitors. This study aims to environmentally synthesize silver nanoparticles using an extract from Lagoecia cuminoides L and evaluate their effectiveness in preventing biological corrosion of buried pipes in soil. The optimal experimental conditions were determined as follows: a volume of 4 ml for the extract, a volume of 4 ml for silver nitrate (AgNO3), pH 9, a duration of 60 minutes, and a temperature of 60 degrees Celsius. Analysis using transmission electron microscopy confirmed the formation of nanoparticles with an average size of approximately 28 nm, while X-ray diffraction patterns exhibited suitable peak intensities. By employing the Scherer equation, the average particle size was estimated to be around 30 nm. Furthermore, antibacterial studies revealed the potent antibacterial activity of the synthesized silver nanoparticles against both aerobic and anaerobic bacteria. This property effectively mitigates the biological corrosion caused by bacteria in steel pipes buried in soil.

Evaluation of Operational Options of Wastewater Treatment Using EQPS Models (EQPS 모델을 이용한 하수처리장 운전 평가)

  • Yoo, Hosik;Ahn, Seyoung
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.401-408
    • /
    • 2018
  • EQPS (Effluent Quality Prediction System, Dynamita, France) was applied to analyze the appropriateness of the design of a bioreactor in A sewage treatment plant. A sewage treatment plant was designed by setting the design concentration of the secondary clarifier effluent to total nitrogen and total phosphorus, 10 mg/L and 1.8 mg/L, respectively, in order to comply with the target water quality at the level of the hydrophilic water. The retention time of the 4-stage BNR reactor was 9.6 hours, which was 0.5 for the pre-anoxic tank, 1.0 for the anaerobic tank, 2.9 for the anoxic tank, and 5.2 hours for the aerobic tank. As a result of the modeling of the winter season, the retention time of the anaerobic tank was increased by 0.2 hours in order to satisfy the target water quality of the hydrophilic water level. The default coefficients of the one step nitrification denitrification model proposed by the software manufacturer were used to exclude distortion of the modeling results. Since the process modeling generally presents optimal conditions, the retention time of the 4-stage BNR should be increased to 9.8 hours considering the bioreactor margin. The accurate use of process modeling in the design stage of the sewage treatment plant is a way to ensure the stability of the treatment performance and efficiency after construction of the sewage treatment plant.

Blue Light Photosensitization in Mitochondrial Membrane of Plant Cells (식물세포 미토콘드리아막에서 일어나는 청색광 Photosensitization)

  • Kim, Kyung-Hyun;Kim, Jong-Pyung;Jung, Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.94-100
    • /
    • 1987
  • Plant mitochondria, irradiated with blue-colored $sunlight(350{\sim}500nm)$ under aerobic and anaerobic conditions, were assayed as to the electron transfer activity of respiratory enzyme system, and compared with those irradiated with orange-colored light(white sunlight minus blue-colored light). The respiratory activity of mitochondria was most seriousely inhibited by illumination with blue-colored light under aerobic condition. Deaeration of mitochondrial suspension resulted in substantial decrease of the photoinhibition by blue-colored light. Meanwhile, orange-colored light demonstrated much less effectiveness-almost ineffectiveness-in causing the inhibition of mitochondrial respiration system. The results of enzymatic assay revealed a strong possibility that FMN in NDH and heme group at least in cytochrome c oxidase, but not FAD in SDH, are the photodynamic sensitizers in mitochondrial inner membrane. Also worthwhile to note is the significant difference from the others of SDH in its photoinhibitory response to the light quality of visible light; that the inhibition of SDH by irradiation was not affected by atmospheric condition and that orange-colored light gave rise to considerable extents of inhibition to the enzyme. This observation was tentatively interpreted in terms of photosensitized reaction not involving molecular oxygen possibly catalyzed by Fe-S centers in the enzyme. The superoxide production and the membrane peroxidation of mitochondria under various treatments also indicated that there was blue-light photodynamic reaction in mitochondria involving active oxygens.

  • PDF

Optimal conditions and effects of prebiotics for growth and antimicrobial substances production of Lactobacillus brevis BK11 (Lactobacillus brevis BK11의 증식과 항균물질 생산을 위한 최적 배양조건 및 prebiotics의 영향)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.288-299
    • /
    • 2015
  • Lactobacillus brevis BK11 obtained from Baikkimchi was selected to study the effects of culture medium, initial pH, atmosphere composition, incubation temperature and time, and prebiotics on growth and production of antimicrobial substances. Growth and antimicrobial substances production of L. brevis BK11 were significantly higher in MRS broth than in BHI or M17 broth. The production of cell mass, lactic acid, and bacteriocin by BK11 strain was at maximum in MRS broth adjusted to pH 6.0. Aerobic and microaerobic conditions were favored cell growth and antimicrobial substances production than anaerobic condition. Biomass and lactic acid production and antimicrobial substances activity of BK 11 were significantly better at 30 and $37^{\circ}C$ than at $25^{\circ}C$. Growth of the strain BK11 entered the stationary growth stage at 24 h after inoculation, and decreased after 36 h. Antimicrobial activities of cell-free culture supernatant and bacteriocin solution were highest when cultured in MRS broth with an initial pH 6.0 for 24-30 h at $37^{\circ}C$. In addition, the highest cell number and lactic acid and bacteriocin production were recorded in the presence of 1 and 2% (w/v) fructooligosaccharide (FOS), however, inulin and raffinose did not affect biological and physicochemical characteristics and antimicrobial activities of L. brevis BK11 cultures. According to these results, production of antimicrobial substances by L. brevis KB11 was closely associated with cell density. Under optimal conditions for antimicrobial substances production, L. brevis BK11 effectively inhibited the growth of Helicobacter pylori ATCC 43504.

Design and Environmental/Economic Performance Evaluation of Wastewater Treatment Plants Using Modeling Methodology (모델링 기법을 이용한 하수처리 공정 설계와 환경성 및 경제성 평가)

  • Kim, MinHan;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.610-618
    • /
    • 2008
  • It is not easy to compare the treatment processes and find an optimum operating condition by the experiments due to influent conditions, treatment processes, various operational conditions and complex factors in real wastewater treatment system and also need a lot of time and costs. In this paper, the activated sludge models are applied to four principal biological wastewater treatment processes, $A_2O$(anaerobic/anoxic/oxic process), Bardenpho(4 steps), VIP(Virginia Initiative Plant) and UCT(University of Cape Town), and are used to compare their environmental and economic assessment for four key processes. In order to evaluate each processes, a new assessment index which can compare the efficiency of treatment performances in various processes is proposed, which considers both environmental and economic cost. It shows that the proposed index can be used to select the optimum processes among the candidate treatment processes as well as to find the optimum condition in each process. And it can find the change of economic and environmental index under the changes of influent flowrate and aerobic reaction size and predict the optimum index under various operation conditions.

The Influence of Pesticides on Some Chemical and Microbiological Properties Related to Soil Fertility II. Effects of CNP Herbicide on Soil Microflora (농약제(農藥劑)의 시용(施用)이 토양(土壤)의 비옥성(肥沃性) 및 미생물상(微生物相)에 미치는 영향(影響) II. CNP 제초제시용(除草劑施用)이 토양미생물(土壤微生物) flora에 미치는 효과(效果))

  • Ryu, Jin-Chang;Araragi, Michio;Koga, Hiroshi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.67-76
    • /
    • 1984
  • This experiment was conducted to find out the changes in microflora of submerged soil uncultivated rice plant by application of CNP herbicide (2, 4, 6 - Trichlorophenyl-4-Nitrophenyl ether) under conditions applied with compost, rice straw, glucose or without organic material. The soil, sandy loam textured was incubated in green house for 66 days. Sampling and analysis of microorganisms were carried out during submergence periods. The results were summarilized as follows. 1. Number of aerobic total bacteria was increased by application of CNP herbicide during submerbed 50 days, afterthen, could not seen the difference. The application of rice straw increased number of aerobic bacteria regardless of CNP herbicide application or not, but glucose tended to decrease. 2. Number of Fungi was constantly maintained at $8-20{\times}10^3$ levels during period of submergence regardless of application of CNP herbicide and organic materials or not. 3. The CNP herbicide application tended to decrease the number of actinomycetes, particularly, in the treatments without organic substances and rice straw were remarkably decreased. 4. Anaerobic-and gram-negative bacteria populations were not showed any difference by application of herbicide and organic materials. 5. The ratios of aerobic bacteria to fungi and aerobic bacteria to actinomycetes appeared high values by application of herbicide and of organic substances. 6. At 66 days after submergence, the ratio of chromogenic actinomycetes to the total number of actinomycetes was lowered in application of herbicide. On the other hand, the percentage of both pretense-positive and cellulase-positive actinomycetes to the total isolates were higher in the treatment with herbicide than An without herbicide, particularly. The ratios of pretense-positive actinomycetes were high in the rice straw application regardless of herbicide application or not, but cellulase-positive actinomycetes was not remarkably difference.

  • PDF

Microbial Leaching of Iron from Shinyemi Magnetite Ore (미생물을 이용한 신예미 자철광으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Suh, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • Microorganisms participate in a variety of geochemical processes such as weathering and formation of minerals, leaching of precious metals from minerals, and cycling of organic matter The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite ore by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial iron leaching experiments were performed using magnetite ore, Shinyemi magnetite ore, in well-defined media with and without bacteria at room temperature for a month. Water soluble Fe and Mn during the leaching experiments were determined by ICP analysis of bioleached samples, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 15 mg/L and Mn = 3.41 mg/L) was lower than that in the anaerobic environments (Fe = 32.8 mg/L and Mn = 5.23 mg/L). The medium pH typically decreased from 8.3 to 7.2 during a month incubation. The Eh of the initial medium decreased from +144.9 mV to -331.7 mV in aerobic environments and from -2.3 mV to -494.6 mV in anaerobic environments upon incubation with the metal reducing microorganisms. The decrease in pH is due to glucose fermentation producing organic acids and $CO_2$. The ability of bacteria to leach soluble iron from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite represents the largest pool of electron acceptor as well as to use as a novel biotechnology for leaching precious and heavy metals from raw materials.