• Title/Summary/Keyword: aerobic condition

Search Result 429, Processing Time 0.026 seconds

Biological Phosphorus and Nitrogen Removal in Anaerobic-Aerobic Activated Sludge Process (활성오니를 이용한 인 및 질소의 생물학적 제거)

  • CHOI Seung-Tae;PARK Mi-Yeon;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.690-695
    • /
    • 1994
  • Simultaneous removal of phosphorus and nitrogen from wastewater was studied by the anaerobic-aerobic system of activated sludge. In the anaerobic stage, most of the influent glucose was removed and orthophosphate was released, when the nitrate and/or nitrite concentration in the wastewater was almost zero. The amount of the released phosphorus was found to be directly proportional to the amount of the removed glucose. When the ratio of phosphorus to glucose in the influent was less than 0.04, the phosphorus in the wastewater was almost completely removed during the aerobic state. Under the anaerobic condition, activated sludge released phosphate and excess removal of phosphate occurred during the aerobic condition. Namely, the stress received in anaerobic period stimulated the uptake of phosphorus in aerobic period. The amounts of phosphorus release in the anaerobic and uptake in the aerobic stage were less in proportional to the concentration of $NO_x-N$. Further, if the initial ratio of $NO_2-N$/glucose was less than 0.37, the inorganic nitrogen in the influent could be completely removed.

  • PDF

Expression of Flagellin Proteins of Campylobacter jejuni within Microaerobic and Aerobic Exposures

  • LEE , YOUNG-DUCK;CHOI, JUNG-PIL;MOK, CHUL-KYOON;JI, GEUN-EOK;KIM, HAE-YEONG;NOH, BONG-SOO;PARK, JONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1227-1231
    • /
    • 2004
  • Campylobacter, one of the emerging foodborne pathogens, is highly adaptable to the external environments by changing its morphology. In the present study, a question of whether the whole-cell antibody would still be effective for its detection even though the morphology of C. jejuni was changed was examined. When microaerophilic C. jejuni was exposed to aerobic conditions for 48 h, its morphological change was detected by confocal laser scanning microscope: Its morphology was confirmed as a spiral-bacilli form in microaerobic condition, however, as a coccoid form with a little spiral-bacilli form, when exposed to aerobic conditions. Also, the expressions of the whole-cell proteins of C. jejuni, and the suppression or induction of newly synthesized proteins in both aerobic and microaerobic conditions were analyzed by two dimensional gel electrophoresis. Additionally, immunoblotting assay with the whole cell antibody for the proteins expressed under the two conditions was performed. It was confirmed that the commercial whole-cell antibody of C. jejuni raised in rabbit was reactive. When analyzed with MALDI- TOF MS, the expressed proteins were confirmed as flagellins. Therefore, even though the morphology changed in aerobic condition, these flagellins were expressed and worked as the eitope proteins, thus making it possible to utilize for the development of an immunosensor for real-time detection of any kind of C. jejuni cell.

Isolation, Identification, and Characterization of Aero-Adaptive Campylobacter jejuni

  • LEE YOUNG-DUCK;MOON BO-YOUN;CHOI JUNG-PIL;CHANG HAK-GIL;NOH BONG-SOO;PARK JONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.992-1000
    • /
    • 2005
  • Campylobacter is one of the emerging foodborne pathogens, and its worldwide incidence rate is extremely high. This study was undertaken to isolate and identify Campylobacter strains from chicken carcasses in the local markets, and analyze their characteristics regarding oxygen tolerance. They were isolated after aerobic enrichment and identified by biochemical, physiological, and morphological characteristics, PCR, and 16S rDNA sequencing. Their oxygen tolerances were analyzed in terms of the cell surface hydrophobicity, cell fatty acid composition, and oxidoreductase. Five strains of C. jejuni were isolated and identified from 61 isolates from 50 chickens. Among them, C. jejuni IC21 grew well in Brucella broth and commercial milk under aerobic condition. However, in the aerobic exposure, the cell surface hydrophobicity of C. jejuni IC21 was almost the same as the other isolates, even though its morphology changed from the spiral-bacilli form into the coccoid form. Fatty acid analyses showed that all Campylobacter strains had a high composition of $C_{19:1}$, cyclopropane fatty acid, and that the amount of the other fatty acids were very similar between them. Interestingly, however, only oxidoreductase activities of C. jejuni IC21 increased highly under aerobic exposure even though its activities were almost the same as the other C. jejuni strains just after microaerobic culture. It had 11.8 times higher catalase activity, 4.4 times higher for SOD, and 2.0 times higher for NADH oxidase activities. Therefore, in the case of the aero-adaptive C. jejuni IC21, expression of oxidoreductase significantly increased under oxidative stressed condition, which might allow it to survive for a longer time and grow on food under aerobic exposure. Such new strain might be one of the explanations for the increase of campylobacteriosis.

Field Study on Stabilization of Landfill Gas by Air Injection Mode (공기주입방식에 의한 매립지가스 안정화에 관한 현장연구)

  • Kim, Kyung;Park, Joonseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.63-71
    • /
    • 2006
  • This study was conducted to evaluate air injection mode on stabilization of landfill gas and to predict the time for landfill mining. It took 8 times longer for pulse aeration to get to aerobic condition, compared to continuous aeration. It was evaluated that continuous aeration mode is more preferable than pulse mode for rapid air exchange in landfill mining. High correlation ($r^2$ = 0.95) was found between continuous aeration time and time to maintain aerobic condition when $0.2m^3/min$ of air was continuously injected and stopped. The aerobic condition ($CH_4$ < 5%) was maintained for 1.5 times longer than aeration time.

  • PDF

Performance Estimation of SBR Aerobic Digestion Combined with Ultrasonication by Numerical Experiment (수치실험을 통한 초음파 결합형 SBR 호기성 소화의 거동 예측)

  • Kim, Sunghong;Kim, Donghan;Lee, Dongwoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.815-826
    • /
    • 2013
  • Using a developed mathematical model and calibrated kinetic constants, numerical experiments for a aerobic digestion of wastewater sludge by SBR aerobic digestion process combined with ultrasonication (USSBR) were performed in this study. It simulated well the phenomena of the decomposition of particulate organics and the release of organic nitrogen and transformation. To achieve 40 % of particulate organics removal, USSBR process requires only 6 days of SRT and 14 W/L of ultrasonic power whereas SBR aerobic digestion process requires 12 days of SRT. Based on the model simulation results, an empirical equation was presented here. This equation will be used to predict digestion efficiency for the given variables of SRT and ultrasonic power dose. USSBR aerobic digestion process can reduce the nitrogen concentration. The optimal operation strategy for the simultaneous removal of solids and soluble nitrogen in this process is estimated to 7 days of SRT with 14 W/L of ultrasonic power dose while anoxic period was 6 hours out of 24 hours of cycle time. In this condition, 40 % of particulate organics as well as 36 % of total nitrogen will be removed and the soluble nitrogen concentration of the centrate will be lower less then 40 mg/L.

Effects of ultrasound coupled with potassium permanganate pre-treatment of sludge on aerobic digestion

  • Demir, Ozlem
    • Advances in environmental research
    • /
    • v.5 no.4
    • /
    • pp.251-262
    • /
    • 2016
  • The biodegradability and decomposition efficiencies increase with the pre-treatment of sludge in a digestion process. In this study, the feasibility of ultrasound coupled with potassium permanganate oxidation as a disintegration method and digestibility of aerobic reactor fed with disintegrated sludge with ultrasound coupled potassium permanganate were investigated. The first stage of the study focused on determining the optimum condition for ultrasonic pre-treatment for achieving better destruction efficiency of sludge. The second part of the study, the aerobic digestibility of sludge disintegrated with ultrasound and potassium permanganate oxidation alone and combined were examined comparatively. The results showed that when 20 min of ultrasonic pre-treatment applied, the specific energy output was 49384 kJ/kgTS with disintegration degree of 58.84%. During the operation of aerobic digester, VS/TS ratios of digesters fed with disintegrated sludge decreased indicating that disintegration methods could obviously enhance aerobic digestion performance. The highest reduction in volatile solids was 75% in the digester fed with ultrasound+potassium permanganate disintegrated sludge at the end of the operation compared to digester fed with raw sludge. Total Nitrogen (TN) and Total Phosphorus (TP) levels in sludge supernatant increased with this combined method significantly. Besides, it promoted the production of ${\bullet}OH$, thus enhancing the release of Carbon (C), Nitrogen (N) and Phosphorus (P) from the sludge. Disintegration with all methods used in this study could not improve Capillary Suction Time (CST) reduction in disintegrated digesters during the operation. The results demonstrated that the combined ultrasound treatment and potassium permanganate oxidation method improves the biodegradability compared to control reactor or their single application.

The Treatment of Box-mill Wastewater Using Aerobic Cometabolism Process - Practical Plant Test - (호기성 공동대사작용에 의한 판지폐수처리 - 현장 적용 테스트 -)

  • Cho, Yong Duck;Lee, Sang Wha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.128-137
    • /
    • 2006
  • This study aims at developing the practical technology in the treatment of box-mill wastewater using the aerobic co-metabolism principle. The conventional activated sludge method exhibited the removal efficiency of $TBOD_5$ and $TCOD_{Mn}$ as 30~50% and 40~50%, respectively. Color was rather increased by 30~130% because the conventional treatment under the aerobic condition did not induce the conversion of molecular structure of dyeing agents. Meanwhile, when the aerobic co-metabolism principle was applied to the same wastewater, the removal efficiency of $TBOD_5$ and $TCOD_{Mn}$ were obtained as 92~97% and 90~94%, respectively. In particular, color was significantly reduced down to 65~85%. The enhancement of treatment efficiency was ascribed to occur not only that the non-degradables were converted to the second substrates, but also that the enzyme activity was increased as MLVSS was kept 3000mg/l or more with the first substrates injected.

Treatment of Textile Wastewater by Anaerobic Sludge and Aerobic Fixed-Bed Biofilm Reactor (혐기성 슬러지 공정과 호기성 고정생물막 공정을 이용한 염색폐수 처리)

  • 박영식;문정현
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.3
    • /
    • pp.55-63
    • /
    • 2002
  • This study was carried out to treat textile wastewater using anaerobic sludge and aerobic fixed-bed biofilm reactor immobilized with Bacillus sp. dominated activated sludge(Bacillus sp. fraction : 81.5%). The range of influent con-centration of SCOD and soluble color were 1032-1507 mg/1, and 1239-1854 degree, respectively. Continuous treatment experiments were performed with variation of textile wastewater ratio at a same HRT. When textile wastewater ratio was 100%(HRT : 24 hours), The removal efficiency of SCOD and soluble color were 88% and 78%, respectively. When compare aerobic reactor of this study that was immobilized with Bacillus sp. dominated activated sludge to other study that was immobilized with activated sludge, SCOD and soluble color removal efficiency of this study showed a little higher efficiency than immobilized with activated sludge. The Bacillus sp. fraction of initial condition was 81.5%), but the fraction after operation was decreased to 31.8%).

Removal of Phosphorus in Aerobic Fixed Biofilm Reactor (호기성 고정생물막 반응조에서 인의 제거)

  • Rim, Jay-Myoung;Han, Dong-Joon;Woo, Young-Gug
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.5-11
    • /
    • 1996
  • While the enhanced biological phosphorus removal(EBPR), in anaerobic/aerobic condition, was known to remove phosphorus by means of metabolism of poly-P microorganisms, the phosphorus removed could be released in the form of ortho-P in the aerobic fixed biofilm reactor. This study was initiated to investigate the cause of ortho-P release in the aerobic fixed biofilm reactor. The resutls indicated that the phosphorus release was caused by autooxidation. The synthesis and release of phosphrous were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was $0.023mgP_{syn}/mgCOD_{rem}$. The phosprous contents of the microorganism were 4.3 ~ 6.0% on a dry weight basis.

  • PDF

Efficient aerobic denitrification in the treatment of leather industry wastewater containing high nitrogen concentration

  • Kang, Kyeong Hwan;Lee, Geon;Kim, Joong Kyun
    • Environmental Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • To treat leather industry wastewater (LIW) containing high nitrogen concentration, eight aerobic denitrifiers were isolated from sludge existing in an LIW-treatment aeration tank. Among them, one strain named as KH8 had showed the great ability in denitrification under an aerobic condition, and it was identified as Pseudomonas aeruginosa R12. The aerobic denitrification ability of the strain KH8 was almost comparable to its anaerobic denitrification ability. In lab-scale aerobic denitrifications performed in 1-L five-neck flasks for 48 hr, denitrification efficiency was found to be much improved as the strain KH8 held a great majority in the seeded cells. From the nitrogen balance at the cell-combination ratio of 10:1 (the strain KH8 to the other seven isolates) within the seeded cells, the percentage of nitrogen loss during the aerobic denitrification process was estimated to be 58.4, which was presumed to be converted to $N_2$ gas. When these seeded cells with lactose were applied to plant-scale aeration tank for 56 day to treat high-strength nitrogen in LIW, the removal efficiencies of $COD_{Cr}$ and TN were achieved to be 97.0% and 89.8%, respectively. Under this treatment, the final water quality of the effluent leaving the treatment plant was good enough to meet the water-quality standards. Consequently, the isolated aerobic denitrifiers could be suitable for the additional requirement of nitrogen removal in a limited aeration-tank capacity. To the best of our knowledge, this is the first report of aerobic denitrifiers applied to plant-scale LIW treatment.