• Title/Summary/Keyword: aerial photograph

Search Result 163, Processing Time 0.027 seconds

Small Scale Digital Mapping using Airborne Digital Camera Image Map (디지털 항공영상의 도화성과를 이용한 소축척 수치지도 제작)

  • Choi, Seok-Keun;Oh, Eu-Gene
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • This study analyzed the issues and its usefulness of drawing small-scale digital map by using the large-scale digital map which was producted with high-resolution digital aerial photograph which are commonly photographed in recent years. To this end, correlation analysis of the feature categories on the digital map was conducted, and this map was processed by inputting data, organizing, deleting, editing, and supervising feature categories according to the generalization process. As a result, 18 unnecessary feature codes were deleted, and the accuracy of 1/5,000 for the digital map was met. Although the size of the data and the number of feature categories increased, this was proven to be shown due to the excellent description of the digital aerial photograph. Accordingly, it was shown that drawing a small-scale digital map with the large-scale digital map by digital aerial photograph provided excellent description and high-quality information for digital map.

Development of FAPIS(Forest Aerial Photograph Interpretation System) for Digital Forest Cover Type Mapping(Version 1.0) (수치임상도 제작을 위한 산림항공사진 영상판독시스템 개발(Version 1.0))

  • You, Byung-Oh;Kim, Chong-Chan;Kim, Sung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • The purpose of the FAPIS(Forest Aerial Photograph Interpretation System) development is to increase accuracy and efficiency of the digital forest cover type mapping for improving conventional analog-based mapping procedures by optimizing work-flow and mapping technology. The database models including digital forest cover type map, aerial photograph, and topographic map were designed for use in this system construction. The interface configured concisely to connect with functions such as search engine, display control, conversion to stereo interpretation mode, modification tools, automation of print layout and database models. It is expected that the standardization methodology based on this system can be applied and extended in making all kinds of digital thematic maps, providing decision-making and information of forest resources.

A Posture Based Control Interface for Quadrotor Aerial Video System Using Head-Mounted Display (HMD를 이용한 사용자 자세 기반 항공 촬영용 쿼드로터 시스템 제어 인터페이스 개발)

  • Kim, Jaeseung;Jeong, Jong Min;Kim, Han Sol;Hwang, Nam Eung;Choi, Yoon Ho;Park, Jin Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1056-1063
    • /
    • 2015
  • In this paper, we develop an interface for aerial photograph platform which consists of a quadrotor and a gimbal using the human body and the head posture. As quadrotors have been widely adopted in many industries such as aerial photography, remote surveillance, and maintenance of infrastructures, the demand of aerial video and photograph has been increasing remarkably. Stick type remote controllers are widely used to control a quadrotor, but this method is not an intuitive way of controlling the aerial vehicle and the camera simultaneously. Therefore, a new interface which controls the serial photograph platform is presented. The presented interface uses the human head movement measured by head-mounted display as a reference for controlling the camera angle, and the human body posture measured from Kinect for controlling the attitude of the quadrotor. As the image captured by the camera is displayed on the head-mounted display simultaneously, the user can feel flying experience and intuitively control the quadrotor and the camera. Finally, the performance of the developed system shown to verify the effectiveness and superiority of the presented interface.

The comparative study of PKNU2 Image and Aerial photo & satellite image

  • Lee, Chang-Hun;Choi, Chul-Uong;Kim, Ho-Yong;Jung, Hei-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.453-454
    • /
    • 2003
  • Most research materials (data), which are used for the study of digital mapping and digital elevation model (DEM) in the field of Remote Sensing and Aerial Photogrammetry are aerial photographs and satellite images. Additionally, they are also used for National land mapping, National land management, environment management, military purposes, resource exploration and Earth surface analysis etc. Although aerial photographs have high resolution, the data, which they contain, are not used for environment exploration that requires continuous observation because of problems caused by its coastline, as well as single - spectral and long-term periodic image. In addition to this, they are difficult to interpret precisely because Satellite Images are influenced by atmospheric phenomena at the time of photographing, and have by far much lower resolution than existing aerial photographs, while they have a great practical usability because they are mulitispectral images. The PKNU 2 is an aerial photographing system that is made to compensate with the weak points of existing aerial photograph and satellite images. It is able to take pictures of very high resolution using a color digital camera with 6 million pixels and a color infrared camera, and can take perpendicular photographs because PKNU 2 system has equipment that makes the cameras stay level. Moreover, it is very cheap to take pictures by using super light aircraft as a platform. It has much higher resolution than exiting aerial photographs and satellite images because it flies at a low altitude about 800m. The PKNU 2 can obtain multispectral images of visible to near infrared band so that it is good to manage environment and to make a classified diagram of vegetation.

  • PDF

MEASURING CROWN PROJECTION AREA AND TREE HEIGHT USINGLIDAR

  • Kwak Doo-Ahn;Lee Woo-Kyun;Son Min-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.515-518
    • /
    • 2005
  • LiDAR(Light Detection and Ranging) with digital aerial photograph can be used to measure tree growth factors like total height, height of clear-length, dbh(diameter at breast height) and crown projection area. Delineating crown is an important process for identifying and numbering individual trees. Crown delineation can be done by watershed method to segment basin according to elevation values of DSMmax produced by LiDAR. Digital aerial photograph can be used to validate the crown projection area using LiDAR. And tree height can be acquired by image processing using window filter$(3cell\times3cell\;or\;5cell\times5cell)$ that compares grid elevation values of individual crown segmented by watershed.

  • PDF

APAS:Aerial Photograph Analysis System (항공 사진 분석 시스템)

  • 김범수;김병천
    • Korean Journal of Cognitive Science
    • /
    • v.2 no.2
    • /
    • pp.359-403
    • /
    • 1990
  • This paper introduces a blackboard system which extracts imbedded road and building structures irom aerial photograph images. The role of three major component(blackboard, knowledge source, and control module)in blackboard system will be illustrated in terms of knowledge representation and control strategies. The hypothesis on a blackboard will be organized in a hierarchical form, the knowledge sources which generate hypothesis and verify them will be shown in detail, and the control module will describe how the knowledge sources can dervie solutions. Especially this paper shows that searching image strutures can be greatly simplified by the use of a mapping image.

A Study on the Propagation of Errors for the Analysis of Orientation in Aerial Photography (항공사진(航空寫眞)의 표정해석(標定解析)의 오차전파(誤差傳播)에 관(關)한 연구(硏究))

  • Yeu, Bock Mo;Lee, Kye Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.81-92
    • /
    • 1982
  • This study aimes at understanding the factors influencing poistion-determination by investigating the propagation of errors developed during orientation work in three-dimmensional coordinates of the aerial photograph. This paper treats the comparison and analysis of phopagation of errors due to computing orientation requited for the analysis of the absolute coordinate from the image coordinates of photograph.

  • PDF

Comparison between the Yangsan and Ulsan fault systems based on the lineament Features (선형구조 분석을 통한 양산 단층계와 울산 단층계의 비교)

  • 최원학;장천중;신정환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.30-37
    • /
    • 2003
  • Lineaments along the Yangsan and Ulsan fault systems were extracted through aerial photograph interpretation in the southeastern part of Korean Peninsula. Lineaments can be classified into five ranks on the basis of certainty and divided by curvatures. Mean strikes of all lineament by aerial photograph interpretation is dominant in NS ~N05$^{\circ}$E direction along the Ulsan fault system and Nl5-20$^{\circ}$E direction along the Yangsan fault system respectively. The curvature of lineament around Yangsan Fault is different from around the Ulsan Fault system, the former shows that straight lineament is dominant but the latter curved lineaments are dominant. It indicates that the Quaternary faults around Ulsan Fault would be appeared as reverse fault.

  • PDF

Wether Conditions for Aerial Photography (항공사진촬영을 위한 국내 기상자료 분석)

  • 조우석;이성훈;최승식;황현덕;이하준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.313-318
    • /
    • 2004
  • The quality of aerial photograph is closely connected with the change of wether conditions like as cloud cover, visibility, drifted snow and so on. To solve some problems caused by wether condition, the related organizations in advanced nations have presented some standards of wether condition for aerial photography. In domestic case, the NGI has presented some standards based on the internal specification of aerial photography and the table of monthly weather condition, but it is not enough to make the quantitative and objective standards on aerial photography specification. In this paper, we proposed a method which can reflect domestic weather condition and make accurate estimation of the average number of clear days in one year for aerial photography.

  • PDF

Analysis of Individual Tree Change Using Aerial Photograph in Deforested area Before and After Road Construction (항공영상을 활용한 도로개발 전·후 산림 훼손지 개체목 분석)

  • Choi, Jae-Yong;Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Lee, Ji-Young;Choi, Won-Tae;Moon, Guen-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.4
    • /
    • pp.65-73
    • /
    • 2018
  • Although the road construction in forest is increasing and there is a need for development ecological restoration on deforest area, no consideration has been given to individual trees in there. This study analyzed aerial photographs of deforest area before and after road construction for determining the degree of forest destruction by extracting individual trees. Study area was selected in the sites where are damaged by road construction in GongJu-si, YuSung-gu, and YeongDong-gun. The aerial photograph taken 1979 before construction is panchromatic image of 80cm in GSD (Ground Sample Distance) and other photograph taken 2016 after construction is multi-spectral image of 10cm in GSD. In order to minimize the difference of GSD, we conducted image re-sampling process for setting to same GSD for the two photographs. After that we carried out visual interpretation method for determining to change of individual tree. The result found that for GongJu-si of the number of individual tree was 1,014 in 1979 and 886 in 2016, which decreased by 128 (12.6%) and the average width of those decreased from 5.77m to 5.75m by 0.47%. In case of YoungDong-gun, the number of it was 761 in 1979 and 746 in 2016, which decreased by 2.0% and the average width of it decreased from 8.99mm to 8.90m by 1.1%. Lastly in case of YuSung-gu, the number of it was 1,578 in 1979 and 988 in 2016, which decreased by 37.4% and the average width of it decreased from 7.09m to 6.65m by 6.21%. these result imply that road construction causes destruction of forests. Since there are limitations such as errors due to researcher, it is necessary to construct a quantitative analysis method for the change of the deforest area. It is need to study the method of extracting individual tree in deforest area more accurately using high-resolution image of GSD 10cm or more as well. This study can be used as a basic data for the ecological restoration of the deforest area considering characteristics of individual tree such as height, diameter at breast height, and biomass.