• Title/Summary/Keyword: aerial photograph

Search Result 163, Processing Time 0.028 seconds

Analysis of Accuracy and DTM Generation Using Digital Photogrammetry (수치사진 측량을 이용한 DTM 추출 및 정확도 분석)

  • Park, Jin-Seong;Hong, Sung-Chang;Sung, Jae-Ryeol;Lee, Byung-Hwan
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.301-306
    • /
    • 2010
  • Recently GIS is not only displaying and servicing data on the 2D, but also is changing rapidly to display and service 3D data. Also 3D related technology is developing actively. For display of 3D data, terrain DTM has become a basis. Generally, to acquire DTM, users are using LIDAR data or digital map's contour line. However, if using these data for producing DTM, users need to additional cost and data lead time. And hard to update terrain data. For possibility of solving these problem, this study did DTM extraction with automatic matching for aerial photograph, and analysed the result with measurement of Orthometric height and excuted accuracy through DTM(which extracted from digital photogrammetric technique). As a result, we can get a high accuracy of RMSE (0.215m).

  • PDF

Development of the Digital Map Updating System using CAD Object Extracted from As-Built Drawings (준공도면에서 추출된 CAD 객체를 이용한 수치지형도의 갱신 시스템 개발)

  • Yang, Sung-Chul;Choi, Jae-Wan;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.13-21
    • /
    • 2009
  • Digital map should have the up-to-dateness as well as the accuracy to perform a role as the national spatial data. As digital mapping process require aerial photograph, surveying, and field working, it consumes a lot of time and cost. So there is a limit to maintain the up-to-dateness. If we updates the digital map frequently by using the as-built drawings, we can prevent the waste of national budget by reuse of existing drawings and make accuracy updates from existing survey results. In spite of this advantages, due to insufficiency of CAD drawing standard, inconsistency of file types of as-built drawings and digital maps, and topology relations between input features and original features, so the frequent updates using the as-built drawings is on the difficult situation to perform. In this research, first, CAD features extracted from as-built drawings land the new/update whether original features exist or not and generate topology from spatial relation of features. Second, suggest the efficient partial-update-plan performing integrity test. As a result, guarantee the accuracy and the up-to-dateness of digital map.

  • PDF

3D Visualization of Forest Information Using LiDAR Data and Forest Type Map (LiDAR 데이터와 임상도를 이용한 산림정보의 3차원 시각화)

  • Bang, Eun-Gil;Yoon, Dong-Hyun;Koh, June-Hwan
    • Spatial Information Research
    • /
    • v.22 no.5
    • /
    • pp.53-63
    • /
    • 2014
  • As recent interest in ecological resources increases, an effort in three-dimensional visualization of the ecological resources has increased for the restoration and preservation of the natural environment as well as the evaluation of the landscape. However, in the case of forest resources, information extraction has been active, but the effort in trying to apply that information into an effective visualization has not happened. In other words, the effort for effective visualization is lacking when it comes to the visualization of forest resources, and numerous cases are ether non-realistic or the simulation required for analysis is inappropriate. Therefore, this paper extracts information through the use of airborne LiDAR data, aerial photograph, and forest type maps to create a vegetation layer, and then uses Flora3D forest modeling tools and ArcGlobe to accurately visualize the vegetation layer into the three dimension. An effective application for restoration and preservation of ecological resources as well as analysis on the urban landscape can be considered as a result of intuitively and realistically enabling the user's awareness of forest information within the Geographic Information System.

A Paleoseismological Study of the Yangsan Fault-Analysis of Deformed Topography and Trench Survey (양산단층대의 고지진학적 연구 -변위지형 분석 및 트렌치 조사-)

  • Gyeong, Jae Bok;Lee, Gi Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.155-168
    • /
    • 1999
  • The paleoseismological importance of the Yangsan fault zone was examined by historical earthquake data, aerial photograph, and trench survey of the area. Occurrences of great earthquakes during the historical time indicate that the Yangsan and/or Ulsan fault have been active during the late Quaternary and generated historical events. Geomorphological evidences of the recent fault activity are clearly shown both in the northern segment (Yugye-ri, Tosung-ri and Naengsu-ri areas) and in the southern segment (Eonyang to Tongdosa areas) of the Yangsan fault. The main Yangsan fault is characterized by fault gouges and NNE-SSW lineaments. The reverse faulting in the Yugye-ri area generated about three-mater displacement of the lower terrace deposits. On the other hand, a major strike-slip movement with a minor component of 5-12 m vertical displacement was identified by the offset of the higher terrace surface in the Eonyang area.

  • PDF

Database Design for Growth Prediction of Forest using Drone Photo (드론 항공사진을 이용한 산림의 성장예측을 위한 DB 설계)

  • Oh, Sun Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.709-714
    • /
    • 2020
  • Forest resources are the most important element that can affect the nature environment directly in modern society. Due to the fast industrialization of our country and marginal states like China, many people suffer torments from severe environmental pollution like yellow and fine dusts everyday recently. So the interests concerned about the significance of nature and environment become major issue nowadays. Precious forest resources, however, are not properly managed and destroyed vainly due to frequent mountain fires, damages by floods, and unplanned land development in real world. Therefore, efficient forest management is required to solve these problems effectively. In this research, we design and implement the forest information database that can predict the growth of forest resources and enables us to manage forest resources efficiently, make decision for logging, build the waterway to prevent flooding, and construct a future tree-planting project easily using forest aerial photograph taken by a drone in order to deploy and manage the forest resources scientifically and systematically.

Changes of Landscape Structure for the Recent 20 Years in the Wangsuk Stream Basin of the Central Korea

  • Lee, Chang-Seok;Cho, Yong-Chan;Shin, Hyun-Chul;Lee, Seon-Mi
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.405-410
    • /
    • 2006
  • Landscape changes for 20 years between 1981 and 2001 in the Wangsuk stream basin located on the central Korea were investigated on the basis of physiognomic vegetation map made from the aerial photograph interpretation and field check. Changes of landscape structure were noticeable in agricultural field and forest landscape elements. Changes in the agricultural fields due to transformation of agricultural pattern into the institutional agriculture dominated landscape change, although urbanization also contributed to such change. The former change due to change of food production structure originated from socio-economic development during this period and the latter to the overpopulation of Seoul. As energy sources for heating and cooking, fertilizer, and fodder for livestock transform from plant materials to fossil fuel, manufactured one, and grain, succession of forest escaped from direct human disturbance dominated change of landscape structure in forested land. Differently from the positive landscape change in the upper area, change in the lower area deteriorated landscape quality by increasing artificial land. It was estimated that such landscape deterioration in the Wangsuk stream basin would influence water quality of the stream. In order to realize sustainable land-use against such environmental degradation, systematic environmental management based on landscape ecological perspective such as "an eco-plan for creating riparian vegetation belt," which is under preparation by Ministry of Environment, was recommended.

Type Classification of Forestland Value by Using GIS Analysis (GIS를 이용한 산지가치 구분)

  • Ha, Do;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.411-419
    • /
    • 2010
  • The type of forestland value was evaluated using various thematic maps, satellite images, and aerial photograph of Namyangju, Based on GIS analysis, forestland value was classified into 4 kind types; conservation, production, recreation, and development values. Finally, the comprehensive analysis map of forestland value was made according to the priority order of value assessment. Among the whole forestland of Namyangju, conservation value area is $195km^2$, high production value area $96km^2$ except the conservation value area, high recreation value area $59km^2$, and the high development value area is $11km^2$. Henceforward, The value evaluation system of forestland by using GIS is to be very applicable for the scientific management of forestland, according to the periodic data update.

Analysis of the riparian vegetation expansion in middle size rivers in Korea (중규모 하천에서의 식생 증가 현황에 대한 분석)

  • Kim, Won;Kim, Sinae
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.875-885
    • /
    • 2019
  • The expansion of riparian vegetation in middle size rivers in Korea had been analyzed in this study. Seom River with dam, Cheongmi River without dam, and Naesung River with no operating dam in the upstream was investigated for the 1 km to identify the expansion of riparian vegetation through the aerial photograph analysis. As a results, we found that the rate of vegetation area is 54.7% in Seom River, 77.5% in Cheongmi River, and 49.7% in Naesung River. The vegetation area had been increased in 3 rivers, and the expansion rate since 2010 is very high nearly up to 2 times (17 times in Naesung River). Sandbar and open-water area, however, have been decreased in the same rate with the riparian vegetation expansion. It could be concluded that vegetation increase trend is clear in rivers regardless of location and dam existence. Further researches are necessary to find out the causes to establish the countermeasures because the increase of vegetation will change the physical system as well as biological system of river.

A Study on the Land Cover Classification and Cross Validation of AI-based Aerial Photograph

  • Lee, Seong-Hyeok;Myeong, Soojeong;Yoon, Donghyeon;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • The purpose of this study is to evaluate the classification performance and applicability when land cover datasets constructed for AI training are cross validation to other areas. For study areas, Gyeongsang-do and Jeolla-do in South Korea were selected as cross validation areas, and training datasets were obtained from AI-Hub. The obtained datasets were applied to the U-Net algorithm, a semantic segmentation algorithm, for each region, and the accuracy was evaluated by applying them to the same and other test areas. There was a difference of about 13-15% in overall classification accuracy between the same and other areas. For rice field, fields and buildings, higher accuracy was shown in the Jeolla-do test areas. For roads, higher accuracy was shown in the Gyeongsang-do test areas. In terms of the difference in accuracy by weight, the result of applying the weights of Gyeongsang-do showed high accuracy for forests, while that of applying the weights of Jeolla-do showed high accuracy for dry fields. The result of land cover classification, it was found that there is a difference in classification performance of existing datasets depending on area. When constructing land cover map for AI training, it is expected that higher quality datasets can be constructed by reflecting the characteristics of various areas. This study is highly scalable from two perspectives. First, it is to apply satellite images to AI study and to the field of land cover. Second, it is expanded based on satellite images and it is possible to use a large scale area and difficult to access.

Landslide Risk Assessment of Cropland and Man-made Infrastructures using Bayesian Predictive Model (베이지안 예측모델을 활용한 농업 및 인공 인프라의 산사태 재해 위험 평가)

  • Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.87-103
    • /
    • 2020
  • The purpose of this study is to evaluate the risk of cropland and man-made infrastructures in a landslide-prone area using a GIS-based method. To achieve this goal, a landslide inventory map was prepared based on aerial photograph analysis as well as field observations. A total of 550 landslides have been counted in the entire study area. For model analysis and validation, extracted landslides were randomly selected and divided into two groups. The landslide causative factors such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in the analysis. Moreover, to identify the correlation between landslides and causative factors, pixels were divided into several classes and frequency ratio was also extracted. A landslide susceptibility map was constructed using a bayesian predictive model (BPM) based on the entire events. In the cross validation process, the landslide susceptibility map as well as observation data were plotted with a receiver operating characteristic (ROC) curve then the area under the curve (AUC) was calculated and tried to extract a success rate curve. The results showed that, the BPM produced 85.8% accuracy. We believed that the model was acceptable for the landslide susceptibility analysis of the study area. In addition, for risk assessment, monetary value (local) and vulnerability scale were added for each social thematic data layers, which were then converted into US dollar considering landslide occurrence time. Moreover, the total number of the study area pixels and predictive landslide affected pixels were considered for making a probability table. Matching with the affected number, 5,000 landslide pixels were assumed to run for final calculation. Based on the result, cropland showed the estimated total risk as US $ 35.4 million and man-made infrastructure risk amounted to US $ 39.3 million.