• Title/Summary/Keyword: adversarial training

Search Result 101, Processing Time 0.021 seconds

Effective Adversarial Training by Adaptive Selection of Loss Function in Federated Learning (연합학습에서의 손실함수의 적응적 선택을 통한 효과적인 적대적 학습)

  • Suchul Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • Although federated learning is designed to be safer than centralized methods in terms of security and privacy, it still has many vulnerabilities. An attacker performing an adversarial attack intentionally manipulates the deep learning model by injecting carefully crafted input data, that is, adversarial examples, into the client's training data to induce misclassification. A common defense strategy against this is so-called adversarial training, which involves preemptively learning the characteristics of adversarial examples into the model. Existing research assumes a scenario where all clients are under adversarial attack, but considering the number of clients in federated learning is very large, this is far from reality. In this paper, we experimentally examine aspects of adversarial training in a scenario where some of the clients are under attack. Through experiments, we found that there is a trade-off relationship in which the classification accuracy for normal samples decreases as the classification accuracy for adversarial examples increases. In order to effectively utilize this trade-off relationship, we present a method to perform adversarial training by adaptively selecting a loss function depending on whether the client is attacked.

Improving Adversarial Robustness via Attention (Attention 기법에 기반한 적대적 공격의 강건성 향상 연구)

  • Jaeuk Kim;Myung Gyo Oh;Leo Hyun Park;Taekyoung Kwon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.621-631
    • /
    • 2023
  • Adversarial training improves the robustness of deep neural networks for adversarial examples. However, the previous adversarial training method focuses only on the adversarial loss function, ignoring that even a small perturbation of the input layer causes a significant change in the hidden layer features. Consequently, the accuracy of a defended model is reduced for various untrained situations such as clean samples or other attack techniques. Therefore, an architectural perspective is necessary to improve feature representation power to solve this problem. In this paper, we apply an attention module that generates an attention map of an input image to a general model and performs PGD adversarial training upon the augmented model. In our experiments on the CIFAR-10 dataset, the attention augmented model showed higher accuracy than the general model regardless of the network structure. In particular, the robust accuracy of our approach was consistently higher for various attacks such as PGD, FGSM, and BIM and more powerful adversaries. By visualizing the attention map, we further confirmed that the attention module extracts features of the correct class even for adversarial examples.

Dynamically weighted loss based domain adversarial training for children's speech recognition (어린이 음성인식을 위한 동적 가중 손실 기반 도메인 적대적 훈련)

  • Seunghee, Ma
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.647-654
    • /
    • 2022
  • Although the fields in which is utilized children's speech recognition is on the rise, the lack of quality data is an obstacle to improving children's speech recognition performance. This paper proposes a new method for improving children's speech recognition performance by additionally using adult speech data. The proposed method is a transformer based domain adversarial training using dynamically weighted loss to effectively address the data imbalance gap between age that grows as the amount of adult training data increases. Specifically, the degree of class imbalance in the mini-batch during training was quantified, and the loss function was defined and used so that the smaller the data, the greater the weight. Experiments validate the utility of proposed domain adversarial training following asymmetry between adults and children training data. Experiments show that the proposed method has higher children's speech recognition performance than traditional domain adversarial training method under all conditions in which asymmetry between age occurs in the training data.

Synthetic Image Dataset Generation for Defense using Generative Adversarial Networks (국방용 합성이미지 데이터셋 생성을 위한 대립훈련신경망 기술 적용 연구)

  • Yang, Hunmin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • Generative adversarial networks(GANs) have received great attention in the machine learning field for their capacity to model high-dimensional and complex data distribution implicitly and generate new data samples from the model distribution. This paper investigates the model training methodology, architecture, and various applications of generative adversarial networks. Experimental evaluation is also conducted for generating synthetic image dataset for defense using two types of GANs. The first one is for military image generation utilizing the deep convolutional generative adversarial networks(DCGAN). The other is for visible-to-infrared image translation utilizing the cycle-consistent generative adversarial networks(CycleGAN). Each model can yield a great diversity of high-fidelity synthetic images compared to training ones. This result opens up the possibility of using inexpensive synthetic images for training neural networks while avoiding the enormous expense of collecting large amounts of hand-annotated real dataset.

Adversarial Shade Generation and Training Text Recognition Algorithm that is Robust to Text in Brightness (밝기 변화에 강인한 적대적 음영 생성 및 훈련 글자 인식 알고리즘)

  • Seo, Minseok;Kim, Daehan;Choi, Dong-Geol
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.276-282
    • /
    • 2021
  • The system for recognizing text in natural scenes has been applied in various industries. However, due to the change in brightness that occurs in nature such as light reflection and shadow, the text recognition performance significantly decreases. To solve this problem, we propose an adversarial shadow generation and training algorithm that is robust to shadow changes. The adversarial shadow generation and training algorithm divides the entire image into a total of 9 grids, and adjusts the brightness with 4 trainable parameters for each grid. Finally, training is conducted in a adversarial relationship between the text recognition model and the shaded image generator. As the training progresses, more and more difficult shaded grid combinations occur. When training with this curriculum-learning attitude, we not only showed a performance improvement of more than 3% in the ICDAR2015 public benchmark dataset, but also confirmed that the performance improved when applied to our's android application text recognition dataset.

A Study on Robustness Evaluation and Improvement of AI Model for Malware Variation Analysis (악성코드 변종 분석을 위한 AI 모델의 Robust 수준 측정 및 개선 연구)

  • Lee, Eun-gyu;Jeong, Si-on;Lee, Hyun-woo;Lee, Tea-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.997-1008
    • /
    • 2022
  • Today, AI(Artificial Intelligence) technology is being extensively researched in various fields, including the field of malware detection. To introduce AI systems into roles that protect important decisions and resources, it must be a reliable AI model. AI model that dependent on training dataset should be verified to be robust against new attacks. Rather than generating new malware detection, attackers find malware detection that succeed in attacking by mass-producing strains of previously detected malware detection. Most of the attacks, such as adversarial attacks, that lead to misclassification of AI models, are made by slightly modifying past attacks. Robust models that can be defended against these variants is needed, and the Robustness level of the model cannot be evaluated with accuracy and recall, which are widely used as AI evaluation indicators. In this paper, we experiment a framework to evaluate robustness level by generating an adversarial sample based on one of the adversarial attacks, C&W attack, and to improve robustness level through adversarial training. Through experiments based on malware dataset in this study, the limitations and possibilities of the proposed method in the field of malware detection were confirmed.

FAST-ADAM in Semi-Supervised Generative Adversarial Networks

  • Kun, Li;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.31-36
    • /
    • 2019
  • Unsupervised neural networks have not caught enough attention until Generative Adversarial Network (GAN) was proposed. By using both the generator and discriminator networks, GAN can extract the main characteristic of the original dataset and produce new data with similarlatent statistics. However, researchers understand fully that training GAN is not easy because of its unstable condition. The discriminator usually performs too good when helping the generator to learn statistics of the training datasets. Thus, the generated data is not compelling. Various research have focused on how to improve the stability and classification accuracy of GAN. However, few studies delve into how to improve the training efficiency and to save training time. In this paper, we propose a novel optimizer, named FAST-ADAM, which integrates the Lookahead to ADAM optimizer to train the generator of a semi-supervised generative adversarial network (SSGAN). We experiment to assess the feasibility and performance of our optimizer using Canadian Institute For Advanced Research - 10 (CIFAR-10) benchmark dataset. From the experiment results, we show that FAST-ADAM can help the generator to reach convergence faster than the original ADAM while maintaining comparable training accuracy results.

Weibo Disaster Rumor Recognition Method Based on Adversarial Training and Stacked Structure

  • Diao, Lei;Tang, Zhan;Guo, Xuchao;Bai, Zhao;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3211-3229
    • /
    • 2022
  • To solve the problems existing in the process of Weibo disaster rumor recognition, such as lack of corpus, poor text standardization, difficult to learn semantic information, and simple semantic features of disaster rumor text, this paper takes Sina Weibo as the data source, constructs a dataset for Weibo disaster rumor recognition, and proposes a deep learning model BERT_AT_Stacked LSTM for Weibo disaster rumor recognition. First, add adversarial disturbance to the embedding vector of each word to generate adversarial samples to enhance the features of rumor text, and carry out adversarial training to solve the problem that the text features of disaster rumors are relatively single. Second, the BERT part obtains the word-level semantic information of each Weibo text and generates a hidden vector containing sentence-level feature information. Finally, the hidden complex semantic information of poorly-regulated Weibo texts is learned using a Stacked Long Short-Term Memory (Stacked LSTM) structure. The experimental results show that, compared with other comparative models, the model in this paper has more advantages in recognizing disaster rumors on Weibo, with an F1_Socre of 97.48%, and has been tested on an open general domain dataset, with an F1_Score of 94.59%, indicating that the model has better generalization.

High Representation based GAN defense for Adversarial Attack

  • Sutanto, Richard Evan;Lee, Suk Ho
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.141-146
    • /
    • 2019
  • These days, there are many applications using neural networks as parts of their system. On the other hand, adversarial examples have become an important issue concerining the security of neural networks. A classifier in neural networks can be fooled and make it miss-classified by adversarial examples. There are many research to encounter adversarial examples by using denoising methods. Some of them using GAN (Generative Adversarial Network) in order to remove adversarial noise from input images. By producing an image from generator network that is close enough to the original clean image, the adversarial examples effects can be reduced. However, there is a chance when adversarial noise can survive the approximation process because it is not like a normal noise. In this chance, we propose a research that utilizes high-level representation in the classifier by combining GAN network with a trained U-Net network. This approach focuses on minimizing the loss function on high representation terms, in order to minimize the difference between the high representation level of the clean data and the approximated output of the noisy data in the training dataset. Furthermore, the generated output is checked whether it shows minimum error compared to true label or not. U-Net network is trained with true label to make sure the generated output gives minimum error in the end. At last, the remaining adversarial noise that still exist after low-level approximation can be removed with the U-Net, because of the minimization on high representation terms.

Adversarial-Mixup: Increasing Robustness to Out-of-Distribution Data and Reliability of Inference (적대적 데이터 혼합: 분포 외 데이터에 대한 강건성과 추론 결과에 대한 신뢰성 향상 방법)

  • Gwon, Kyungpil;Yo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Detecting Out-of-Distribution (OOD) data is fundamentally required when Deep Neural Network (DNN) is applied to real-world AI such as autonomous driving. However, modern DNNs are quite vulnerable to the over-confidence problem even if the test data are far away from the trained data distribution. To solve the problem, this paper proposes a novel Adversarial-Mixup training method to let the DNN model be more robust by detecting OOD data effectively. Experimental results show that the proposed Adversarial-Mixup method improves the overall performance of OOD detection by 78% comparing with the State-of-the-Art methods. Furthermore, we show that the proposed method can alleviate the over-confidence problem by reducing the confidence score of OOD data than the previous methods, resulting in more reliable and robust DNNs.