• Title/Summary/Keyword: adversarial network

Search Result 279, Processing Time 0.03 seconds

Single Image Dehazing: An Analysis on Generative Adversarial Network

  • Amina Khatun;Mohammad Reduanul Haque;Rabeya Basri;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.136-142
    • /
    • 2024
  • Haze is a very common phenomenon that degrades or reduces the visibility. It causes various problems where high quality images are required such as traffic and security monitoring. So haze removal from images receives great attention for clear vision. Due to its huge impact, significant advances have been achieved but the task yet remains a challenging one. Recently, different types of deep generative adversarial networks (GAN) are applied to suppress the noise and improve the dehazing performance. But it is unclear how these algorithms would perform on hazy images acquired "in the wild" and how we could gauge the progress in the field. This paper aims to bridge this gap. We present a comprehensive study and experimental evaluation on diverse GAN models in single image dehazing through benchmark datasets.

FAST-ADAM in Semi-Supervised Generative Adversarial Networks

  • Kun, Li;Kang, Dae-Ki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.31-36
    • /
    • 2019
  • Unsupervised neural networks have not caught enough attention until Generative Adversarial Network (GAN) was proposed. By using both the generator and discriminator networks, GAN can extract the main characteristic of the original dataset and produce new data with similarlatent statistics. However, researchers understand fully that training GAN is not easy because of its unstable condition. The discriminator usually performs too good when helping the generator to learn statistics of the training datasets. Thus, the generated data is not compelling. Various research have focused on how to improve the stability and classification accuracy of GAN. However, few studies delve into how to improve the training efficiency and to save training time. In this paper, we propose a novel optimizer, named FAST-ADAM, which integrates the Lookahead to ADAM optimizer to train the generator of a semi-supervised generative adversarial network (SSGAN). We experiment to assess the feasibility and performance of our optimizer using Canadian Institute For Advanced Research - 10 (CIFAR-10) benchmark dataset. From the experiment results, we show that FAST-ADAM can help the generator to reach convergence faster than the original ADAM while maintaining comparable training accuracy results.

FD-StackGAN: Face De-occlusion Using Stacked Generative Adversarial Networks

  • Jabbar, Abdul;Li, Xi;Iqbal, M. Munawwar;Malik, Arif Jamal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2547-2567
    • /
    • 2021
  • It has been widely acknowledged that occlusion impairments adversely distress many face recognition algorithms' performance. Therefore, it is crucial to solving the problem of face image occlusion in face recognition. To solve the image occlusion problem in face recognition, this paper aims to automatically de-occlude the human face majority or discriminative regions to improve face recognition performance. To achieve this, we decompose the generative process into two key stages and employ a separate generative adversarial network (GAN)-based network in both stages. The first stage generates an initial coarse face image without an occlusion mask. The second stage refines the result from the first stage by forcing it closer to real face images or ground truth. To increase the performance and minimize the artifacts in the generated result, a new refine loss (e.g., reconstruction loss, perceptual loss, and adversarial loss) is used to determine all differences between the generated de-occluded face image and ground truth. Furthermore, we build occluded face images and corresponding occlusion-free face images dataset. We trained our model on this new dataset and later tested it on real-world face images. The experiment results (qualitative and quantitative) and the comparative study confirm the robustness and effectiveness of the proposed work in removing challenging occlusion masks with various structures, sizes, shapes, types, and positions.

Morpho-GAN: Unsupervised Learning of Data with High Morphology using Generative Adversarial Networks (Morpho-GAN: Generative Adversarial Networks를 사용하여 높은 형태론 데이터에 대한 비지도학습)

  • Abduazimov, Azamat;Jo, GeunSik
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.11-14
    • /
    • 2020
  • The importance of data in the development of deep learning is very high. Data with high morphological features are usually utilized in the domains where careful lens calibrations are needed by a human to capture those data. Synthesis of high morphological data for that domain can be a great asset to improve the classification accuracy of systems in the field. Unsupervised learning can be employed for this task. Generating photo-realistic objects of interest has been massively studied after Generative Adversarial Network (GAN) was introduced. In this paper, we propose Morpho-GAN, a method that unifies several GAN techniques to generate quality data of high morphology. Our method introduces a new suitable training objective in the discriminator of GAN to synthesize images that follow the distribution of the original dataset. The results demonstrate that the proposed method can generate plausible data as good as other modern baseline models while taking a less complex during training.

  • PDF

Face Morphing Using Generative Adversarial Networks (Generative Adversarial Networks를 이용한 Face Morphing 기법 연구)

  • Han, Yoon;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.435-443
    • /
    • 2018
  • Recently, with the explosive development of computing power, various methods such as RNN and CNN have been proposed under the name of Deep Learning, which solve many problems of Computer Vision have. The Generative Adversarial Network, released in 2014, showed that the problem of computer vision can be sufficiently solved in unsupervised learning, and the generation domain can also be studied using learned generators. GAN is being developed in various forms in combination with various models. Machine learning has difficulty in collecting data. If it is too large, it is difficult to refine the effective data set by removing the noise. If it is too small, the small difference becomes too big noise, and learning is not easy. In this paper, we apply a deep CNN model for extracting facial region in image frame to GAN model as a preprocessing filter, and propose a method to produce composite images of various facial expressions by stably learning with limited collection data of two persons.

Perceptual Generative Adversarial Network for Single Image De-Snowing (단일 영상에서 눈송이 제거를 위한 지각적 GAN)

  • Wan, Weiguo;Lee, Hyo Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.403-410
    • /
    • 2019
  • Image de-snowing aims at eliminating the negative influence by snow particles and improving scene understanding in images. In this paper, a perceptual generative adversarial network based a single image snow removal method is proposed. The residual U-Net is designed as a generator to generate the snow free image. In order to handle various sizes of snow particles, the inception module with different filter kernels is adopted to extract multiple resolution features of the input snow image. Except the adversarial loss, the perceptual loss and total variation loss are employed to improve the quality of the resulted image. Experimental results indicate that our method can obtain excellent performance both on synthetic and realistic snow images in terms of visual observation and commonly used visual quality indices.

StarGAN-Based Detection and Purification Studies to Defend against Adversarial Attacks (적대적 공격을 방어하기 위한 StarGAN 기반의 탐지 및 정화 연구)

  • Sungjune Park;Gwonsang Ryu;Daeseon Choi
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.3
    • /
    • pp.449-458
    • /
    • 2023
  • Artificial Intelligence is providing convenience in various fields using big data and deep learning technologies. However, deep learning technology is highly vulnerable to adversarial examples, which can cause misclassification of classification models. This study proposes a method to detect and purification various adversarial attacks using StarGAN. The proposed method trains a StarGAN model with added Categorical Entropy loss using adversarial examples generated by various attack methods to enable the Discriminator to detect adversarial examples and the Generator to purification them. Experimental results using the CIFAR-10 dataset showed an average detection performance of approximately 68.77%, an average purification performance of approximately 72.20%, and an average defense performance of approximately 93.11% derived from restoration and detection performance.

An Edge Detection Technique for Performance Improvement of eGAN (eGAN 모델의 성능개선을 위한 에지 검출 기법)

  • Lee, Cho Youn;Park, Ji Su;Shon, Jin Gon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.109-114
    • /
    • 2021
  • GAN(Generative Adversarial Network) is an image generation model, which is composed of a generator network and a discriminator network, and generates an image similar to a real image. Since the image generated by the GAN should be similar to the actual image, a loss function is used to minimize the loss error of the generated image. However, there is a problem that the loss function of GAN degrades the quality of the image by making the learning to generate the image unstable. To solve this problem, this paper analyzes GAN-related studies and proposes an edge GAN(eGAN) using edge detection. As a result of the experiment, the eGAN model has improved performance over the existing GAN model.

Improving Adversarial Robustness via Attention (Attention 기법에 기반한 적대적 공격의 강건성 향상 연구)

  • Jaeuk Kim;Myung Gyo Oh;Leo Hyun Park;Taekyoung Kwon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.4
    • /
    • pp.621-631
    • /
    • 2023
  • Adversarial training improves the robustness of deep neural networks for adversarial examples. However, the previous adversarial training method focuses only on the adversarial loss function, ignoring that even a small perturbation of the input layer causes a significant change in the hidden layer features. Consequently, the accuracy of a defended model is reduced for various untrained situations such as clean samples or other attack techniques. Therefore, an architectural perspective is necessary to improve feature representation power to solve this problem. In this paper, we apply an attention module that generates an attention map of an input image to a general model and performs PGD adversarial training upon the augmented model. In our experiments on the CIFAR-10 dataset, the attention augmented model showed higher accuracy than the general model regardless of the network structure. In particular, the robust accuracy of our approach was consistently higher for various attacks such as PGD, FGSM, and BIM and more powerful adversaries. By visualizing the attention map, we further confirmed that the attention module extracts features of the correct class even for adversarial examples.

Applications of Generative Adversarial Networks (Generative Adversarial Networks의 응용 현황)

  • Kim, Dong-Wook;Kim, Sesong;Jung, Seung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.807-809
    • /
    • 2017
  • Generative adversarial networks (GAN)에 대한 간략하게 설명하고, MNIST (숫자 손 글씨 데이터 셋)를 이용한 간단한 실험을 통해 GAN 구조 구조의 이해를 돕는다. 그리고 GAN이 어떻게 응용이 되고있는지 다양한 논문들을 통해 살펴본다. 본 고에서는 GAN 논문들을 크게 이미지 스타일 변경, 3D 오브젝트 추정, 손상된 이미지 복원, 언어의 시각화, 기타 등으로 분류하였다.