• Title/Summary/Keyword: advanced vehicle

검색결과 1,338건 처리시간 0.03초

Vehicle-Level Traffic Accident Detection on Vehicle-Mounted Camera Based on Cascade Bi-LSTM

  • Son, Hyeon-Cheol;Kim, Da-Seul;Kim, Sung-Young
    • 한국정보기술학회 영문논문지
    • /
    • 제10권2호
    • /
    • pp.167-175
    • /
    • 2020
  • In this paper, we propose a traffic accident detection on vehicle-mounted camera. In the proposed method, the minimum bounding box coordinates the central coordinates on the bird's eye view and motion vectors of each vehicle object, and ego-motions of the vehicle equipped with dash-cam are extracted from the dash-cam video. By using extracted 4 kinds features as the input of Bi-LSTM (bidirectional LSTM), the accident probability (score) is predicted. To investigate the effect of each input feature on the probability of an accident, we analyze the performance of the detection the case of using a single feature input and the case of using a combination of features as input, respectively. And in these two cases, different detection models are defined and used. Bi-LSTM is used as a cascade, especially when a combination of the features is used as input. The proposed method shows 76.1% precision and 75.6% recall, which is superior to our previous work.

Boundary Condition for Bare Chassis Brackets of the Commercial Vehicle

  • Yang, Seung Bok
    • International journal of advanced smart convergence
    • /
    • 제11권1호
    • /
    • pp.94-100
    • /
    • 2022
  • It is common for commercial vehicles to make the top part according to the use after making the bear chassis, and to connect various devices with the bear chassis. Various brackets used in bear chassis for the development of all automobiles, including commercial vehicles, play a role of connecting the components required for driving and operating the car to the car body. In commercial vehicles, components necessary for operation are installed in the bear chassis; that is, the bear chassis of commercial vehicles is a space where the devices required for driving and operating the vehicle are installed. The devices required for the configuration of the vehicle are drive, brake, exhaust and steering, etc. These devices are basically connected to the body, the front axis, or the rear axis. The part interlinking the apparatuses required for the vehicle drive to the car body or axis is bracket. In this study, we analyzed the boundary conditions to evaluate the stability of the three brackets that connect the components of the car to the front axis of the new type of 30-seater bus in the development process. In order to analyze the boundary conditions, the boundary conditions according to the driving condition of the vehicle were classified. For stress analysis to evaluate the stability of brackets according to the driving state of the vehicle, it is reasonable to give the bracket a boundary condition of harsh conditions.

An Optimal Guide Path Design of Bi-Directional Automated Guided Vehicle Systems AGVS

  • Lee, Seong-Beak;Kim, Young-Myung
    • 산업공학
    • /
    • 제2권1호
    • /
    • pp.37-45
    • /
    • 1989
  • Guide path design is the most important factor in planning automated guided vehicle systems(AGVS) in manufacturing shop environments. This paper studies a heuristic procedure to design an optimal bi-directional guide path with the objective of the minimum total travel time of the vehicles. An example is solved to validate the procedure developed.

  • PDF

전자흡인식자기부상차량(電磁吸引式磁氣浮上車輛)의 곡선부주행특성(曲線部走行特性) (Curvature Running Characteristics of Maglev vehicle)

  • 권병일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.58-62
    • /
    • 1989
  • Magnetic levitation railway is being developed as an advanced ground transport system which is high speed and has less environmental pollution. In this paper, the effectiveness of the proposed controller is proved by a vehicle body's curvature running characteristics. We select two types of transition curves for investigation, namely clothoid and sine.

  • PDF

듀얼 확장 칼만 필터를 이용한 쿼드로터 비행로봇 위치 정밀도 향상 알고리즘 개발 (Precise Positioning Algorithm Development for Quadrotor Flying Robots Using Dual Extended Kalman Filter)

  • 승지훈;이덕진;류지형;정길도
    • 제어로봇시스템학회논문지
    • /
    • 제19권2호
    • /
    • pp.158-163
    • /
    • 2013
  • The fusion of the GPS (Global Positioning System) and DR (Dead Reckoning) is widely used for position and latitude estimation of vehicles such as a mobile robot, aerial vehicle and marine vehicle. Among the many types of aerial vehicles, grater focus is given on the quad-rotor and accuracy of the position information is becoming more important. In order to exactly estimate the position information, we propose the fusion method of GPS and Gyroscope sensor using the DEKF (Dual Extended Kalman Filter). The DEKF has an advantage of simultaneously estimating state value and a parameter of dynamical system. It can also be used even if state value is not available. In order to analyze the performance of DEKF, the computer simulation for estimating the position, the velocity and the angle in a circle trajectory of quad-rotor was done. As it can be seen from the simulation results using own proposed DEKF instead of EKF on own fusion method in the navigation of a quad-rotor gave better performance values.

직교배열표를 이용한 액티브 후드 리프트 시스템의 설계 (Design of the Active Hood Lift System Using Orthogonal Arrays)

  • 신문균;박경택;이근배;배한일;박경진
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.123-131
    • /
    • 2006
  • The majority of pedestrian fatalities and injuries are caused by vehicle-pedestrian accidents. Recently, it has been recognized as a serious problem. Injuries of occupants in a vehicle have been decreased considerably. However, efforts for protection of pedestrians are still insufficient. These days, many advanced industries are striving for a better protection of pedestrians by using an active hood lift system, rather than reforming the existing structure. In this research, the active hood lift system is designed to enhance the performance for protection. The active hood lift system is analyzed by using the nonlinear finite element method. An optimization problem is formulated by incorporation of the analysis results. Orthogonal arrays are utilized to solve the formulated problem. An iterative optimization algothrithm using orthogonal arrays is utilized for design in the discrete space. It is found that the method can remarkably decrease the number of function evaluations.

Future Urban Transportation Technologies for Sustainability with an Emphasis on Growing Mega Cities: A Strategic Proposal on Introducing a New Micro Electric Vehicle Segment

  • Honey, Emilio;Lee, Hojin;Suh, In-Soo
    • World Technopolis Review
    • /
    • 제3권3호
    • /
    • pp.139-152
    • /
    • 2014
  • The current transportation regime is largely based on two alternatives: (1) fixed route public transit, and (2) private ownership of internal combustion engine (ICE) powered vehicles per households. This paper analyzes one possible transportation alternative, Micro Electric Vehicles or MEVs, and compares with the ICE vehicles in terms of social, economic and environmental benefits, especially emphasizing its environmental advantage over ICE vehicles for future sustainability. While some representative models of MEVs exist in a limited market capacity, but global technical standards are generally insufficient and non-homogenous across nations, which restricts the development of the proposed transportation sector. The focus of this paper is to analyze the characteristics and potential benefits of MEVs in economical and environmental perspectives, including development status and technical standards, with a particular focus in the E.U., the U.S., Japan, and Korea. Based on the data of analysis, this paper aims to derive and propose a cooperative and adaptive global policy framework designed to speed up adoption and expansion of the global MEV market, including passenger and utility vehicles. We propose MEV to be a new mobility segment in the global transportation market because of their advantage in environmental impact, sustainability, overall cost of ownership, and safety.

Shock Response Prediction of a Low Altitude Earth Observation Satellite During Launch Vehicle Separation

  • Lee, Dae-Oen;Han, Jae-Hung;Jang, Hae-Won;Woo, Sung-Hyun;Kim, Kyung-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권1호
    • /
    • pp.49-57
    • /
    • 2010
  • Several pyrotechnic devices are employed over the course of satellite's missions, generally for the separation of structural subsystems and deployment of appendages. Firing of pyrotechnic devices results in impulsive loads characterized by high peak acceleration and high frequency content which can cause failures of various flight hardware elements and small components. Thus, accurate prediction of acceleration level in various components of spacecraft due to pyrotechnic devices is important. In this paper, two methods for pyroshock prediction, an empirical model and statistical energy analysis in conjunction with virtual mode synthesis, are applied to predict shock response of a low altitude earth observation satellite during launch vehicle separation. The predicted results are then evaluated through comparison with the shock test results.

고강도 강판 ULSAB-AVC 모델과 일반강판 모델의 충돌성능 비교 평가 (Comparative Crashworthiness Assessment of the ULSAB-AVC Model with Advance High Strength Steel and with Low Strength Steel)

  • 윤종헌;허훈;김세호;김홍기;박성호
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.22-27
    • /
    • 2006
  • As the regulation and assessment program for safety of passengers become stringent, automakers are required to develop lighter and safer vehicles. In order to fulfill both requirements which conflict with each other, automobile and steel companies have proposed the application of AHSS(Advance High Strength Steel) such as DP, TRIP and martensite steel. ULSAB-AVC model is one of the most remarkable reactions to offer solutions with the use of steel for the challenge to improve simultaneously the fuel efficiency, passenger safety, vehicle performance and affordability. This paper is concerned with the crash analysis of ULSAB-AVC model according to the US-SINCAP in order to compare the effectiveness between the model with AHSS and that with conventional steels. The crashworthiness is investigated by comparing the deformed shape of the cabin room, the energy absorption characteristics and the intrusion velocity of a car.