• Title/Summary/Keyword: advanced packaging

Search Result 356, Processing Time 0.031 seconds

A Study on Evaluation for Sampling and Analytical Methods of Diatomaceous Earth Dust (규조토 분진 측정 및 분석 방법의 비교에 관한 연구)

  • Lim, Hyun Sul;Kim, Ji Yong;Cheong, Hoe Kyeong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.5 no.2
    • /
    • pp.212-225
    • /
    • 1995
  • This study was performed in a diatomite factory located at Pohang City, Kyeongsangbuk-Do. The major objectives were to evaluate sampling and analytical methods of diatomaceous earth dust. Concentrations of total and respirable diatomaceous earth dust were measured. Size distribution of dust was analyzed by a personal cascade impactor and the particle size analyzer which is an application of multiple diffraction method. Also crystalline silica in respirable and total dust samples was analyzed quantitatively by X-ray diffraction and Fourie Transform Infrared Spectroscopy(FTIR). The results were as follows: The airborne total and respirable dust concentrations, particle size distribution, and cristalline silica(quartz) concentrations showed approximately a log-normal distribution. The means of totaldust concentrations at flour maufacturing, fire brick grinding and packaging processes exceeded the Korean and American Conference of Governmental Industrial Hygienists standards, $10mg/m^3$. The size distribution of diatomaceous earth dust was log-normal and identified as the rspirable particle mass and thoracic particle mass. The crystalline silica in respirable and total dust samples was identified to quartz and contained about 10 % in those samples. Finally, it is necessary to study the applicability of multiple diffraction for particle size distribution to compare the ACGIH's size selective sampling with other materials containing crystalline silica. Also, advanced quantitative study to X-ray diffraction and FTIR methods shoud be carried out 10 verify general and specific characteristics for respirable crystalline silica.

  • PDF

Policy Direction for Promoting the Satellite Data Use in Public Sector

  • Kim, Young-Pyo;Sakong, Hosang;Park, Sung-Mi
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.355-362
    • /
    • 1999
  • With the ready access to the high resolution satellite image data, users of and areas covered by satellite image data are constantly on the rise world-wide. Korea will also be able to take full advantage of the satellite data once the KOMPSAT is successfully launched. Harmonizing satellite data production and application technology and users' needs, along with the guiding policy is essential for promoting satellite data use. Up to now, the Korean government has mainly concentrated on developing production technology for the satellite units. However, the imminent task of independent satellite data production demands a promotion policy for satellite data use. In this context, the policy is defined as an important medium for identifying the role and status of satellite image information at the national level and also Preparing the legal as well as systematic foundation for producing, building, distributing, and packaging satellite data. For example, in the countries with the advanced satellite technology, such as the United States, the United Kingdom, and Australia, digital ortho image and digital elevation model (DEM) are mandatorily included in the National Geographic Framework Data through policy measures. In addition, in order for the efficient provision of the satellite data, separate organization or agency is being in operation for the exclusive production and distribution of the satellite data. The present paper aims to examine the role and status of the satellite data as well as their current status and problems in Korea in reference to the National Spatial Data Infrastructure, and finally to provide the policy directions to promote the satellite data use in public sector on the basis of the preceding analyses.

  • PDF

Visualization for racing effect and meniscus merging in underfill process (언더필 공정에서 레이싱 효과와 계면 병합에 대한 가시화)

  • Kim, Young Bae;Kim, Sungu;Sung, Jaeyong;Lee, MyeongHo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.351-357
    • /
    • 2013
  • In flip chip packaging, underfill process is used to fill epoxy bonder into the gap between a chip and a substrate in order to improve the reliability of electronic devices. Underfill process by capillary motion can give rise to unwanted air void formations since the arrangement of solder bumps affects the interfacial dynamics of flow meniscus. In this paper, the unsteady flows in the capillary underfill process are visualized and then the racing effect and merging of the meniscus are investigated according to the arrangement of solder bumps. The result is shown that at higher bump density, the fluid flow perpendicular to the main direction of flow becomes stronger so that more air voids are formed. This phenomenon is more conspicuous at a staggered bump array than at a rectangular bump array.

Full Color Top Emission AMOLED Displays on Flexible Metal Foil

  • Hack, Michael;Hewitt, Richard;Urbanik, Ken;Chwang, Anna;Brown, Julie J.;Lu, Jeng Ping;Shih, Chinwen;Ho, Jackson;Street, Bob;Ramos, Teresa;Rutherford, Nicole;Tognoni, Keith;Anderson, Bob;Huffman, Dave
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. For portable applications flexible (or conformable) and rugged displays will be the future. In this paper we outline our progress towards developing such a low power consumption active-matrix flexible OLED $(FOLED^{TM})$ display. We demonstrate full color 100 ppi QVGA active matrix OLED displays on flexible stainless steel substrates. Our work in this area is focused on integrating three critical enabling technologies. The first technology component is based on UDC's high efficiency long-lived phosphorescent OLED $(PHOLED^{TM})$ device technology, which has now been commercially demonstrated as meeting the low power consumption performance requirements for mobile display applications. Secondly, is the development of flexible active-matrix backplanes, and for this our team are employing PARC's Excimer Laser Annealed (ELA) poly-Si TFTs formed on metal foil substrates as this approach represents an attractive alternative to fabricating poly-Si TFTs on plastic for the realization of first generation flexible active matrix OLED displays. Unlike most plastics, metal foil substrates can withstand a large thermal load and do not require a moisture and oxygen permeation barrier. Thirdly, the key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing, and in this device we employ a multilayer thin film Barix encapsulation technology in collaboration with Vitex systems. Drive electronics and mechanical packaging are provided by L3 Displays.

  • PDF

- A Case Study on OOP Component Build-up for Reliability of MRP System - (MRP 시스템의 신뢰성을 위한 객체재향 컴포넌트 개발 사례)

  • Seo Jang Hoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.3
    • /
    • pp.211-235
    • /
    • 2004
  • Component based design is perceived as a key technology for developing advanced real-time systems in a both cost- and time effective manner. Already today, component based design is seen to increase software productivity, by reducing the amount of effort needed to update and maintain systems, by packaging solutions for re-use, and easing distribution. Nowdays, a thousand and one companies in If(Information Technology) industry such as Sl(System Integration) and software development companies, regardless of scale of their projects, has spent their time and endeavor on developing reusable business logic. The component software is the outcome of software developers effort on overcoming this problem; the component software is the way propositioned for quick and easy implementation of software. In addition, there has been lots of investment on researching and developing the software development methodology and leading If companies has released new standard technologies to help with component development. For instance, COM(Component Object Model) and DCOM(Distribute COM) technology of Microsoft and EJB(Enterprise Java Beans) technology of Sun Microsystems has turned up. Component-Based Development (CBD) has not redeemed its promises of reuse and flexibility. Reuse is inhibited due to problems such as component retrieval, architectural mismatch, and application specificness. Component-based systems are flexible in the sense that components can be replaced and fine-tuned, but only under the assumption that the software architecture remains stable during the system's lifetime. In this paper, It suggest that systems composed of components should be generated from functional and nonfunctional requirements rather than being composed out of existing or newly developed components. about implements and accomplishes the modeling for the Product Control component development by applying CCD(Contract-Collaboration Diagram), one of component development methodology, to MRP(Material Requirement Planning) System

Synthesis of high purity aluminum nitride nanopowder by RF induction thermal plasma (유도결합 열 플라즈마를 이용한 고순도 질화알루미늄 나노 분말 합성)

  • Kim, Kyung-In;Choi, Sung-Churl;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Aluminum nitride, which has outstanding properties such as high thermal conductivity and electrical resistivity, has been received a great attention as a substrate and packaging material of semiconductor devices. Since aluminum nitride has a high sintering temperature of 2173 K and its properties depends on the impurity level, it is necessary to synthesize high-purity and nano-sized aluminum nitride powders for the applications. In this research, we synthesized high purity aluminum nitride nanopowders from aluminum using RF induction thermal plasma system. Sheath gas (NH3) flow was controlled to establish the synthesis condition of high purity aluminum nitride nanopowders. The obtained aluminum nitride nanopowders were evaluated by XRD, SEM, TEM, BET, FTIR and N-O analysis.

Solder Bump Deposition Using a Laser Beam (레이저빔을 이용한 솔더범프 적층 공정)

  • Choi, Won-Suk;Kim, Jea-Woon;Kim, Jong-Hyeong;Kim, Joo-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.37-42
    • /
    • 2012
  • LIFT (laser-induced forward transfer) is an advanced laser processing method used for selectively transferring micron-sized objects. In our study, this process was applied in order to deposit solder balls in microsystem packaging processes for electronics. Locally melted solder paste could be transferred to a rigid substrate using laser pulses. A thin glass plate with a solder cream layer was used as a donor film, and an IR laser pulse (wavelength = 1070 nm) was used to transfer a micron-sized solder ball to the receptor. Mass balance and energy balance were applied to analyze the shape and temperature profiles of the solder paste drops. The transferred solder bumps had measured diameters of 30-40 ${\mu}m$ and thicknesses of 50 ${\mu}m$ in our experiment. The limits and applications of this method are also presented.

Luminescence Properties of Ba3Si6O12N2:Eu2+ Green Phosphor

  • Luong, Van Duong;Doan, Dinh Phuong;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.211-217
    • /
    • 2015
  • To fabricate white LED having a high color rendering index value, red color phosphor mixed with the green color phosphor together in the blue chip, namely the blue chips with RG phosphors packaging is most favorable for high power white LEDs. In our previous papers, we reported on successful syntheses of $Sr_{2-}$ $Si_5N_8:Eu^{2+}$ and $CaAlSiN_3$ phosphors for red phosphor. In this work, for high power green phosphor, greenemitting ternary nitride $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphor was synthesized in a high frequency induction furnace under $N_2$ gas atmosphere at temperatures up to $1400^{\circ}C$ using $EuF_3$ as a raw material for $Eu^{2+}$ dopant. The effects of molar ratio of component and experimental conditions on luminescence property of prepared phosphors have been investigated. The structure and luminescence properties of prepared $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphors were investigated by XRD and photoluminescence spectroscopy. The excitation spectra of $Ba_3Si_6O_{12}N_2:Eu^{2+}$ phosphors indicated broad excitation wavelength range of 250 - 500 nm, namely from UV to blue region with distinct enhanced emission spectrum peaking at ${\approx}530nm$.

Structural Adjustment of In-Situ Surface-Modified Silica Matting Agent and Its Effect on Coating Performance

  • Xu, Qingna;Ji, Tongchao;Tian, Qingfeng;Su, Yuhang;Niu, Liyong;Li, Xiaohong;Zhang, Zhijun
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850137.1-1850137.9
    • /
    • 2018
  • A series of silica surface-capped with hexamethyldisilazane (denoted as $H-SiO_2$) were prepared by liquid-phase in-situ surface-modification method. The as-obtained $H-SiO_2$ was incorporated into acrylic amino (AA) baking paint to obtain AA/$H-SiO_2$ composite extinction paints and/or coatings. $N_2$ adsorption-desorption tests were conducted to determine the specific surface area as well as pore size and pore volume of $H-SiO_2$. Moreover, the effects of $H-SiO_2$ matting agents on the physical properties of AA paint as well as the gloss and transmittance of AA-based composite extinction coatings were investigated. Results show that $H-SiO_2$ matting agents possess a large specific surface area and pore volume than previously reported silica obtained by liquid-phase method. Besides, they have better dispersibility in AA baking paint than the unmodified silica. Particularly, $H-SiO_2$ with a silica particle size of $6.7{\mu}m$ and the dosage of 4% (mass fraction) provides an extinction rate of 95.2% and a transmittance of 79.3% for the AA-based composite extinction coating, showing advantages over OK520, a conventional silica matting agent. Along with the increase in the silica particle size, $H-SiO_2$ matting agents cause a certain degree of increase in the viscosity of AA paint as well as a noticeable decrease in the gloss of the AA-based composite extinction coating, but they have insignificant effects on the hardness and adhesion to substrate of the AA-based composite coatings. This means that $H-SiO_2$ matting agents could be well applicable to preparing low-viscosity and low-gloss AA-based matte coatings.

Conception and Modeling of a Novel Small Cubic Antenna Design for WSN

  • Gahgouh Salem;Ragad Hedi;Gharsallah Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This paper presents a novel miniaturized 3-D cubic antenna for use in wireless sensor network (WSN) application. The geometry of this antenna is designed as a cube including a meander dipole antenna. A truly omnidirectional pattern is produced by this antenna in both E-plane and H-plane, which allows for non-intermittent communication that is orientation independent. The operating frequency lies in the ISM band (centered in 2.45 GHz). The dimensions of this ultra-compact cubic antenna are 1.25*1.12*1cm3 which features a length dimension λ/11. The coefficient which presents the overall antenna structure is Ka=0.44. The cubic shape of the antenna is allowing for smart packaging, as sensor equipment may be easily integrated into the cube hallow interior. The major constraint of WSN is the energy consumption. The power consumption of radio communication unit is relatively high. So it is necessary to design an antenna which improves the energy efficiency. The parameters considered in this work are the resonant frequency, return loss, efficiency, bandwidth, radiation pattern, gain and the electromagnetic field of the proposed antenna. The specificity of this geometry is that its size is relatively small with an excellent gain and efficiency compared to previously structures (reported in the literature). All results of the simulations were performed by CST Microwave Studio simulation software and validated with HFSS. We used Advanced Design System (ADS) to validate the equivalent scheme of our conception. Input here the part of summary.