• Title/Summary/Keyword: advanced calculation model

Search Result 236, Processing Time 0.025 seconds

The Guaranteed Bound of Horizon Size for the Stabilizing Receding Horizon Control

  • Quan, ZhongHua;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.429-432
    • /
    • 2004
  • In this paper, we derive the guaranteed bound of the horizon size for the stabilizing receding horizon control(RHC). From the convergence property of the solution to the Riccati equation, it is shown that the lower bound can be represented in terms of the parameters in the given system model, which makes an off-line calculation possible. Additionally, it is shown to be able to obtain the stabilizing RHC without respect to the final weighting matrix. The proposed guaranteed bound is obtained numerically via simulation.

  • PDF

Analysis of Characteristics on Small Air-Conditioning Type Evaporator (소형 공조용 증발기의 특성 해석)

  • 김재돌;윤정인;김영수;문춘근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.573-580
    • /
    • 2001
  • When investigating optimum design of the evaporator in the refrigeration and heat pump systems, there is still lack of data for the dynamic characteristics of the evaporator, This is due to the fact that the static characteristics in the evaporator are absolutely difficult to measure and are burdened with uncertainties. In this study, the simulation works for static characteristics in the evaporator of small air conditioner are carried out to obtain the data of dynamic characteristics. In the simulation, the test evaporator is divided by two-phase evaporating region and single-phase heating region. The major parameters are refrigerant flow rate, heat transfer coefficient of air, air velocity and air temperature. The results show that the calculation method for tube length is an easy-to-use to model analysis of static characteristics and to determine state of refrigerant in the evaporator. The effects of the four parameters on the length of evaporating completed point and heat flow rate to the evaporator are clarified.

  • PDF

CALCULATION OF HYDRODYNAMIC CHARACTERISTICS FOR SHIP'S PROPULSION MECHANISM OF WEIS-FOGH TYPE (Weis-Fogh형 선박추진기구의 유체역학적 특성계산)

  • Ro K.D.;Kang M.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.305-310
    • /
    • 2005
  • The velocity and pressure fields of a ship's propulsion mechanism of the Weis-Fogh type, in which a airfoil moves reciprocally in a channel, are studied in this paper using the advanced vortex method. The airfoil and the channel are approximated by a finite number of source and vortex panels, and the free vortices are introduced from the body surfaces. The viscous diffusion of fluid is represented using the core-spreading model to the discrete vortices. The velocity is calculated on the basis of the generalized Biot-Savart low and the pressure field is calculated from integrating the equation given by the instantaneous velocity and vorticity fields. Two-dimensional unsteady viscose flows of this propulsion mechanism are numerically clarified, and the calculated results agree well with the experimental ones.

  • PDF

A study of Modifying Bus Impedance Matrix for Node Seperation (노드분할에 대한 모선 임피던스 행열 수정방법 연구)

  • Oh, Yong-Taek;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.6-8
    • /
    • 1993
  • Short Circuit analysis is one of the most fundamental procedures for power system analysis problem. In order 10 solve the problem, In order to solve the problem, it's required to develop an advanced algorithm by which modified bus admittance matrix are easily computed for a large number of alternative network configuration. This paper proposes a new calculation method to efficiently modify the bus impedance matrix elements of large power system by method for removal of link, and presents its Practicality by applying the proposed method in the power system model.

  • PDF

Calculation of Turbulent Flows Using an Implicit Scheme on Two-Dimensional Unstructured Meshes (2차원 비정렬 격자에서의 내재적 기법을 이용한 난류 유동 재산)

  • Kang Hee Jung;Kwon Oh Joon
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.26-34
    • /
    • 1997
  • An implicit viscous turbulent flow solver is developed for two-dimensional geon unstructured triangular meshes. The flux terms are discretized based on a cell-centered formulation with the Roe's flux-difference splitting. The solution is advanced in time us backward-Euler time-stepping scheme. At each time step, the linear system of equation approximately solved wi th the Gauss-Seidel relaxation scheme. The effect of turbulence is with a standard k-ε two-equation model which is solved separately from the mean flow equation the same backward-Euler time integration scheme. The triangular meshes are generated advancing-front/layer technique. Validations are made for flows over the NACA 0012 airfoil. Douglas 3-element airfoil. Good agreements are obtained between the numerical result experiment.

  • PDF

Calculation of Turbulent Flows Using an Implicit Scheme on Two-Dimensional Unstructured Meshes (2차원 비정렬 격자에서의 내재적 기법을 이용한 난류 유동 계산)

  • Kang Hee Jung;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.29-37
    • /
    • 1997
  • An implicit viscous turbulent flow solver is developed for two-dimensional geometries on unstructured triangular meshes. The flux terms are discretized based on a cell-centered finite-volume formulation with the Roe's flux-difference splitting. The solution is advanced in time using an implicit backward-Euler time-stepping scheme. At each time step, the linear system of equations is approximately solved with the Gauss-Seidel relaxation scheme. The effect of turbulence effects is approximated with a standard $k-{\varepsilon}$ two-equation model which is solved separately from the mean flow equations using the same backward-Euler time integration scheme. The triangular meshes are generated using an advancing-front/layer technique. Validations are made for flows over the NACA0012 airfoil and the Douglas 3-element airfoil. Good agreements are obtained between the numerical results and the experiment.

  • PDF

Approximation Method for the Calculation of Stress Intensity Factors for the Semi-elliptical Surface Flaws on Thin-Walled Cylinder

  • Jang Chang-Heui
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.319-328
    • /
    • 2006
  • A simple approximation method for the stress intensity factor at the tip of the axial semielliptical cracks on the cylindrical vessel is developed. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. For these, 3-D finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R=0.1. The approximation solutions are within $\pm2.5%$ of the those of finite element analysis using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the approximation method provides sufficiently accurate stress intensity factor values for the axial semi-elliptical flaws on the surface of the reactor pressure vessel.

The dynamic effects of intake system on the engine performance (흡기계의 동적효과가 기관성능에 미치는 영향)

  • 조진호;김병수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.85-93
    • /
    • 1987
  • The intake system of 4-cycle, 4-cylinder reciprocating engine is investigated the simple model composed of vessel, duct and throttling part. The numerical calculation based on the simulation is performed for the flow phenomena including heat transfer, friction and bend of duct at each part. In the multi-cylinder engine, the volumetric efficiency is increased a little as the junction location is closed to cylinder at the engine speed having maximum volumetric efficiency. The configuration and dimension of intake system have an influence on the inertia effect by resistance and pressure variation, and the magnitude of that is varied by the engine speed. Thus the volumetric efficiency is correlative to them. The volumetric efficiency is high as the intake valve close is advanced at the low engine speed, and is delayed at high speed.

  • PDF

Prediction of Highway Traffic Noise (고속도로 교통소음 예측)

  • 조대승;김진형;최태묵;오정한;장태순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1280-1286
    • /
    • 2001
  • This paper presents some advanced and supplemental methods to enhance the accuracy in case of calculating geometric divergence attenuation, attenuation by multiple screening structures, ground attenuation at unflat surfaces of sound during propagation outdoors by the methods specified in ISO 9613-2. Moreover, a calculation method for considering short-term wind effect, specified in ASJ Model-1998, is also introduced. To verify the accuracy of adopted methods, we have carried out highway traffic noise prediction and measurement at the twelve locations appearing representative road shapes and structures, such as flat, retained cut, elevated, barrier-constructed roads. From the results, we have confirmed the predicted results show good correspondence with the measured at direct, diffracted and reflected sound fields within 30m from the center of near side lane.

  • PDF

Semiempirical Molecular Orbital Calculations of the Substituent Effects on Acylations of 3-Cephem Analogues

  • Chang Moon-Ho;Koh Hun-Yeong;Lee Jung-Chull;Lee Yoon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.453-455
    • /
    • 1994
  • Semiempirical MO calculations are applied to estimate the substituent effects on acylations of the nonfused N-vinyl-2-amino $\beta-lactams$ having frameworks analogous to 3-cephems. The stabilization energy for the reaction intermediate of the nucleophilic attack by the hydroxide ion is selected as the reactivity index and calculated by AM1 and PM3 methods for the model $\beta-lactams$ with substituents at the C1 and N-vinyl terminal positions. The reactivities are larger for -SH connected to the C1 and strong $\pi-acceptors$ at the N-vinyl terminal implying the large reactivity for known active cephalosporins. Quantum chemical calculation of stabilization energy could be useful in correlating antibiotic activities of many compounds obtained as derivatives of a lead compound.