• Title/Summary/Keyword: adult tissues

Search Result 319, Processing Time 0.029 seconds

Microsporidian Multiplication and Spore Production in Various Tissues of Pupa and Adult, in Relation to Age and Development of Silkworm, Bombyx mori L.(Lepidoptera: Bombycidae)

  • Nanu, Madana Mohanan;Gupta, Sunil Kumar;Saratchandra, Beera;Haldar, Durga Prasad
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.2
    • /
    • pp.83-89
    • /
    • 2009
  • Multiplication and spore production of three microsporidia(Nosema bombycis, Nosema sp. 1 and Nosema sp. 2) in selected tissues of pupa and adult of silkworm, Bombyx mori L. were studied in two seasons (SI, SII) with distinct temperature (SI: $20.1{\pm}0.8^{\circ}C$ and SII: $25.1{\pm}0.7^{\circ}C$) regimes. Multiplication of the microsporidia followed a logistic pattern with a lag phase, an exponential phase and a stationary phase. In SII, spore production was significantly (P<0.01) higher in various tissues. Highest spore production was observed 30 days post inoculation (p.i.) in SI and in SII, it was $21{\sim}23$ days p.i. Spore production was significantly (P<0.01) higher in the gut tissues than other tissues. Nosema sp. 2 registered significantly (P<0.01) higher spore production in both the seasons compared to Nosema bombycis and Nosema sp. 1. Results indicate that the multiplication and spore production of microsporidia are tissue specific and extremely sensitive to the temperature at which the host is reared. Through this study, the precise day that the spore numbers of the microsporidia are maximized can be predicted in both pupa and adult in case the infection is initiated in the first instar.

Xenografting of the Human Vitrified Ovarian Tissues into the Immune Deficient Animal (사람 난소조직의 초자화 냉동보존과 면역결핍 동물에의 이식)

  • Lee, Kyung-Ah;Yoon, Se-Jin;Lee, Sook-Hyun;Shin, Chang-Sook;Choi, An-Na;Cho, Yong-Seon;Yoon, Tae-Ki;Cha, Kwang-Yul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.2
    • /
    • pp.145-149
    • /
    • 2000
  • Objective: The present study was conducted to evaluate the viability of germ cells from the adult and fetal ovarian tissues after vitrification followed by xenografting. Method: The human adult ovarian tissues were obtained from 33 years old patient, and the fetal ovarian tissues were obtained from 22 weeks and 25 weeks in gestation. Ovarian tissues were cryopreserved by vitrification with 5.5 M ethylene glycol (EG 5.5) and 1.0 M sucrose as cryoprotectants. Adult and fetal ovarian tissues were pre-equilibrated with EG 5.5 at room temperature for 10 and 5 minutes, respectively and plunged into liquid nitrogen immediately. Frozen-thawed tissues were xenografted into NOD-SCID mice to evaluate the viability and capacity for further growth of the primordial follicles. Grafts were recovered from the recipients 4 weeks after transplantation and histological analysis was accomplished. Result and Conclusion: Grafts recovered 4 weeks after transplantation contained less number of oocytes and primordial follicles compared to that of the fresh tissues. Survived follicles were mainly primordial and intermediary with larger diameter and more granulosa cells. It is confirmed that 1) the ovarian tissues were healthy and the germ cells were survived after vitrification, and 2) the survived fetal primordial follicles after vitrification resumed the growth in the xenografts.

  • PDF

Molecular Properties of Excitation-Contraction Coupling Proteins in Infant and Adult Human Heart Tissues

  • Jung, Dai Hyun;Lee, Cheol Joo;Suh, Chang Kook;You, Hye Jin;Kim, Do Han
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • Excitation-contraction coupling (ECC) proteins in the human heart were characterized using human atrial tissues from different age groups. The samples were classified into one infant group (Group A: 0.2-7 years old) and three adult groups (Group B: 21-30; Group C: 41-49; Group D: 60-66). Whole homogenates (WH) of atrial tissues were assayed for ligand binding, $^{45}Ca^{2+}$ uptake and content of ECC proteins by Western blotting. Equilibrium [$^3H$]ryanodine binding to characterize the ryanodine receptor (RyR) of the sarcoplasmic reticulum (SR) showed that the maximal [$^3H$]ryanodine binding ($B_{max}$) to RyR was similar in all the age groups, but the dissociation constant ($k_d$) of ryanodine was higher in the infant group than the adult groups. Oxalate-supported $^{45}Ca^{2+}$ uptake into the SR, a function of the SR SERCA2a activity, was lower in the infant group than in the adult groups. Similarly, [$^3H$]PN200-110 binding, an index of dihydropyridine receptor (DHPR) density, was lower in the infant group. Expression of calsequestrin and triadin assessed by Western blotting was similar in the infant and adult groups, but junctin expression was considerably higher in the adult groups. These differences in key ECC proteins could underlie the different $Ca^{2+}$ handling properties and contractility of infant hearts.

Immunoelectron microscopic localization of partially purified antigens in adult Paragonimus iloktsuenensis

  • Lee, Ok-Ran;Chung, Pyung-Rim
    • Parasites, Hosts and Diseases
    • /
    • v.39 no.2
    • /
    • pp.119-132
    • /
    • 2001
  • An immunoelectron microscopy employing immunogold labeling method was performed to detect tissue origin of Dl fraction (DIA) among 5 antigenic protein fractions partially purified by DEAE- anion exchange chromatography from water- soluble crude antigen (PIWA) of adult Paragonimus iloktsuenensis. Immune reactions of adult worm tissues with rabbit serum immunoglobulin immunized with crude antigen (PI-Ig) and D1 antigen (D1-Ig), as well as rat serum immunoglobulin infected with P. iloktsuenensis were observed. DlA showed strong antigenicity in the intestinal epithelium of the worms during the early infection period of 2-4 weeks after infection. The vitellaria also showed stronger antigenicity than the other tissue sites in immune reaction of tissues against all immunoglobulins from 4 to 33 weeks after vitelline development. Therefore, it is suggested that DlA was mainly originated from the intestinal epithelial tissues before the development of vitelline gland of the parasites. Immune-reactivity of two immunoglobulins (PI-Ig, Dl-Ig) was significantly different in intestinal epithelial cytoplasmic protrusions (CP) and intestinal epithelial secretory granules (SG). In the experimental group with Dl-Ig, gold particles were labeled significantly in CP than in SG when compared to the PI-Ig group. Thus, the major antigenic materials in Dl antigen having a strong antigenicity in the early infection period was considered to be originated from the intestinal epithelial tissue .

  • PDF

Apolipophorin-III uptake by the adult ovary in the wax moth Galleria mellonella (꿀벌부채명나방의 성충 난소에 의한 아포리포포린-III의 흡수)

  • Yun, Hwa-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.3
    • /
    • pp.620-624
    • /
    • 2009
  • Apolipophorin-III (apoLp-III) was isolated and purified from the last instar larval hemolymph of Galleria mellonella by gel chromatography (Sephadex G-100) and ion exchange chromatography (CM-52). In the present study, I wanted to show that apoLp-III is taken up into the adult ovary in Galleria mellonella. Adult ovary tissues were incubated at room temperature for 30 min with fluorescein isothiocyanate (FITC)-labeled apoLp-III. Fluorescence microscopy and sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) revealed that adult ovary tissues internalize fluorescence-labeled apoLp-III. The results suggest that apoLp-III is taken up by the adult ovary.

Genetical and Physiological Mechanisms of Adult Diapause in Insects

  • Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.34 no.1
    • /
    • pp.20-32
    • /
    • 1995
  • Adult diapause in insects is characterized by suppression of reproductive development. It is induced by environmental cues such as photoperiod, temperature, food availability, and other conditions Diapause-inducing environment is recognized and analyzed by the brain of the insects. The interpreted information is conveyed via endocrine system to target tissues such as ovaries, fat body, and other tissues. From this signal hierarchy of a brain-endocrine-target tissue axis, several factors are involved to express a diapause trait in a quantitative mode, even though the insects show a binomial phenotye between being in diapause or not. Recent works estimated that the number of the factors is relatively small by a series of crossing trials between high and low diapause lines. Heritability of the diapause is quite high (ca. 70%) in some species. Epistasis, sex-linkage, pleiotropism, and other nongenetic components also affect diapause inheritance. Most physiological studies have been focused on control mechanisms of the juvenile hormone (JH) synthesis in corpora allata (CA) because JH level in hemolymph of teneral adults is critical to decide a later developmental mode. Allatostatin, an antagonizer of JH synthesis, has been believed to be a potent brain message to CA for adult diapause induction.

  • PDF

Analyses of Transcription Factor CP2 Expression during Development and Differentiation

  • Chae, Ji-Hyung;Oh, Eun-Jung;Kim, Chul-Geun
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.143-150
    • /
    • 1997
  • Transcription factor CP2 was identified initially to bind the promoter region of the murine a-globin gene and its activity was shown to increase 2 to 3 fold during the induced differentiation of murine erythroleukemia (MEL) cells. To get further insight into the role of CP2 during development and differentiation, steady-state levels of CP2 message were monitored by using reverse transcriptase (RT)-PCR and in situ hybridization assays in the cultured MEL cells and differentiating embryonic stem (ES) cells in vitro, and in fetal and adult mouse tissues. The amount of CP2 messages increased 3 to 5 fold during induced differentiation of MEL cells, suggesting that the increment of CP2 activity during induced differentiation of MEL cells is originated from the increase of transcription initiation. On the other hand, CP2 expression is not restricted to the erythroid lineage cells; CP2 expressed ubiquitously from the undifferentiated ES cells to adult tissue cells. CP2 transcript was observed even in the undifferentiated ES cells and the level of expression increased from day 8 of the differentiating embryoid bodies. RT-PCR assay in the total RNAs prepared from several tissues of the adult mouse also showed ubiquitous expression profile, although the levels of expression were variable among tissues. When non-radioactive in situ hybridization assay was performed to the paraffin-sectioned whole body mouse embryos at days 11.5, 13.5, and 16.5 after fertilization, variable amounts of positive signals were also detected in different tissues.

  • PDF

Use of Neonatal Chondrocytes for Cartilage Tissue Engineering

  • KANG SUN WOONG;PARK JUNG HO;KIM BYUNG SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.259-264
    • /
    • 2005
  • Transplantation of cultured chondrocytes can regenerate cartilage tissues in cartilage defects in humans. However, this method requires a long culture period to expand chondrocytes to a large number of cells for transplantation. In addition, chondrocytes may dedifferentiate during long-term culture. These problems can potentially be overcome by the use of undifferentiated or partially developed cartilage precursor cells derived from neonatal cartilage, which, unlike chondrocytes from adult cartilage, have the capacity for rapid in vitro cell expansion and may retain their differentiated phenotype during long-term culture. The purpose of this study was to compare the cell growth rate and phenotypic modulation during in vitro culture between adult chondrocytes and neonatal chondrocytes, and to demonstrate the feasibility of regenerating cartilage tissues in vivo by transplantation of neonatal chondrocytes expanded in vitro and seeded onto polymer scaffolds. When cultured in vitro, chondrocytes isolated from neonatal (immediately postpartum, 2 h of age) rats exhibited much higher growth rate than chondrocytes isolated from adult rats. After 5 days of culture, more neonatal chondrocytes were in the differentiated state than adult chondrocytes. Cultured neonatal chondrocytes were seeded onto biodegradable polymer scaffolds and transplanted into athymic mice's subcutaneous sites. Four weeks after implantation, neonatal chondrocyte-seeded scaffolds formed white cartilaginous tissues. Histological analysis of the implants with hematoxylin and eosin showed mature and well-formed cartilage. Alcian blue/ safranin-O staining and Masson's trichrome staining indicated the presence of highly sulfated glycosarninoglycans and collagen, respectively, both of which are the major extracellular matrices of cartilage. Immunohistochemical analysis showed that the collagen was mainly type II, the major collagen type in cartilage. These results showed that neonatal chondrocytes have potential to be a cell source for cartilage tissue engineering.

Gestational Exposure to Bisphenol A Causes DNA Hypomethylation and the Upregulation of Progesterone Receptor Expression in the Uterus in Adult Female Offspring Rats

  • Seung Gee Lee;Ji-Eun Park;Yong-Pil Cheon;Jong-Min Kim
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.195-203
    • /
    • 2023
  • Exposure to environmental chemicals, including endocrine-disrupting chemicals, during the gestational period can have profound adverse effects on several organs in offspring. Bisphenol A (BPA) can infiltrate the human body through food and drinks, and its metabolites can cross both the placental and the blood-brain barriers. In this study, we investigate the effect of gestational exposure to BPA on epigenetic, biochemical, and histological modifications in the uterine tissues of F1 adult offspring rats. Pregnant rats were exposed to BPA from gestational day 8-15, and changes in global DNA methylation in uterine tissues obtained from adult offspring born to the exposed mothers were analyzed. Global DNA methylation analysis revealed that gestational exposure to BPA resulted in DNA hypomethylation in the uterus. Progesterone receptor (PR) protein expression in uterine tissues was monitored using western blot analysis, which revealed that the PR protein content was considerably higher in all BPA-exposed groups than in the control. Immunohistochemical examination for the PR revealed that intense PR-positive cells were more frequently observed in the BPA-exposed group than in the control group. To date, the evidence that the upregulation of PRs observed in the present study was caused by the non-methylation of specific PR promoter regions is lacking. Conclusively, these results indicate that exposure to BPA during gestation induces epigenetic alterations in the uteri of adult female offspring. We speculate that the global DNA hypomethylation and upregulation of the PR observed simultaneously in this study might be associated with the uterus.

Endogenous Stem Cells in the Ear (귀에 존재하는 내인성 성체줄기세포)

  • Park, Kyoung Ho
    • Korean Journal of Otorhinolaryngology-Head and Neck Surgery
    • /
    • v.56 no.12
    • /
    • pp.749-753
    • /
    • 2013
  • Basically stem cells have characteristics of multi-potency, differentiation into multiple tissue types, and self-renew through proliferation. Recent advances in stem cell biology can make identifying the stem-cell like cells in various mammalian tissues. Stem cells in various tissues can restore damaged tissue. Stem cells from the adult nervous system proliferate to form clonal floating colonies called spheres in vitro, and recent studies have demonstrated sphere formation by cells in the tympanic membrane, vestibular system, spiral ganglion, and partly in the organ of Corti. The presence of stem cells in the ear raises the possibilities for the regeneration of the tympanic membrane & inner ear hair cells & neurons. But the gradual loss of stem cells postnatally in the organ of Corti may correlate with the loss of regenerative capacity and limited hearing restoration. Future strategies using endogenous stem cells in the ear can be the another treatment modality for the patients with intractable inner ear diseases.