• 제목/요약/키워드: adsorption yield

검색결과 177건 처리시간 0.025초

Protein Aggregation and Adsorption upon In vitro Refolding of Recombinant Pseudomonas Lipase

  • Lee, Young-Phil;Rhee, Joon-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권6호
    • /
    • pp.456-460
    • /
    • 1996
  • Recombinant Pseudomonas lipase was used to study protein aggregation and adsorption upon in vitro refolding. Protein adsorption as well as aggregation was responsible for major side reactions upon in vitro refolding as a function of protein concentration. The optimal range of protein concentration was determined by the relative contribution of protein aggregation and adsorption. Above the optimal range, the yield of active lipase inversely correlated with protein aggregation, showing a competition between folding and aggregation. However, adsorption of protein rather than protein aggregation is thought to contribute as a major side reaction of the refolding process at sub-optimal concentrations at which the formation of aggregates should be more reduced. Protein aggregation was influenced by the amount of guanidine hydrochloride in the refolding solvent. The refolding temperature was a critical factor determining the extent of protein aggregation. The refolding yield was also affected by the dilution fold and dilution mode, which suggests that the refolding process might kinetically compete with the rate of mixing.

  • PDF

인산활성화제에 의한 폐호도껍질을 원료로 한 활성탄제조 및 이의 중금속 이온 흡착특성 (Production of Activated Carbon from Waste Walnut Shell Using Phosphoric Acid and Its Adsorption Characteristics for Heavy Metal Ion)

  • 이고은;안주현;김동수
    • 자원리싸이클링
    • /
    • 제12권3호
    • /
    • pp.13-24
    • /
    • 2003
  • 폐호도껍질을 원료로 활성탄을 제조하는 과정에서 활성화 온도, 활성화 시간, 활성화제의 양, 그리고 활성화제의 종류 등을 변수로 하여 활성화 특성을 조사하였다. 인산을 활성화제로 사용하여 제조된 활성탄은 그 흡착능이 온도가 증가함에 따라 증가하여 약 $550^{\circ}C$부근에서 최대 흡착능을 보였으며 그 수율은 온도 상승에 따라 지속적으로 감소하였다. 활성화 시간은 약 2시간 정도에서 최적의 조건을 보였으며 시간이 증가함에 따라 활성탄의 수율은 계속 감소하였다. 활성화제의 농도 증가에 따라 수율은 지속적으로 상승하였으며 흡착능 또한 증대되다가 약 1.5M $H_3PO_4$ 이상의 조건에서는 오히려 흡착능이 감소하였다. SEM으로 관찰한 조건에 따른 활성탄의 미세구조의 변화는 조건별 흡착능의 변화와 잘 일치되었으며 활성화제의 종류는 활성화 과정에서 중요한 영향을 미치는 것으로 조사되었다. 제조된 활성탄의 흡착특성을 파악하기 위해 $Cu^{2+}$ 이온을 흡착질로 하여 흡착반응을 조사한 결과, 흡착반응은 전체적으로 2차식을 따르는 것으로 관찰되었으며 흡착질의 초기 농도가 감소함에 따라 반응상수는 점차 증가하였다. 평형흡착량은 Freundlich Model 을 잘 따르는 것으로 나타났으며 온도별 흡착반응을 검토한 결과, 중금속 이온의 흡착은 흡열반응의 특성을 나타내었다. 흡착에 따른 Activation Energy는 약 13.07kcal/mol로 산출되었으며 van't Hoff Equation을 이용하여 흡착반응의 열역학적 인자들을 계산하였다.

AMP와 $MnO_2$에 대한 방사성핵종의 흡착특성 (Adsorption Characteristics of Radionuclides on AMP and $MnO_2$)

  • 김창규;김철수;김용재;노병환
    • Journal of Radiation Protection and Research
    • /
    • 제23권2호
    • /
    • pp.115-121
    • /
    • 1998
  • 본 연구에서는 AMP와 $MnO_2$에 대한 해수중 방사성 핵종 및 안정원소들의 흡착율을 검토하였다. $^{137}Cs$, $^{85}Sr$$^{131}I$에 대한 AMP의 흡착율은 각각 97.5%, 11.8% 및 15.1%를 나타낸 반면, 기타 다른 핵종 및 원소에 대한 흡착율은 6% 미만이었다. $MnO_2$에 대한 흡착율은 $^{40}K$, $^{137}Cs$$^{203}Hg$를 제외한 대부분의 방사성핵종 및 안정원소에 대해 90% 이상이였으나, $^{40}K$, $^{137}Cs$$^{203}Hg$의 흡착율은 8% 미만이였다.

  • PDF

Effects of Dilute Acid Pretreatment on Enzyme Adsorption and Surface Morphology of Liriodendron tulipifera

  • Min, Byeong-Cheol;Koo, Bon-Wook;Gwak, Ki-Seob;Yeo, Hwan-Myeong;Choi, Joon-Weon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권2호
    • /
    • pp.187-195
    • /
    • 2011
  • In this study, dilute acid pretreatment of $Liriodendron$ $tulipifera$ was performed for enzymatic hydrolysis. As the pretreatment temperature was increased, enzymatic hydrolysis and enzyme adsorption yield also increased. The highest enzymatic hydrolysis yield was 57% (g/g) and enzyme adsorption was 44% (g/g). Enzymatic hydrolysis yield was determined with weight loss of pretreated biomass by enzyme, and enzyme adsorption was a percentage of enzyme weight attaching on pretreated biomass compared with input enzyme weight. When $L.$ $tulipifera$ was pretreated with 1% sulfuric acid at $160^{\circ}C$ for 5 min., hemicellulose was significantly removed in pretreatment, but the lignin contents were constant. Other changes in surface morphology were detected on biomass pretreated at $160^{\circ}C$ by a field emission scanning electron microscope (FESEM). A large number of spherical shapes known as lignin droplets were observed over the entire biomass surface after pretreatment. Hemicellulose removal and morphological changes improved enzyme accessibility to cellulose by increasing cellulose exposure to enzyme. It is thus evidence that enzyme adsorption is a significant factor to understand pretreatment effectiveness.

Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

  • Johanes Pramana Gentur SUTAPA;Ganis LUKMANDARU;Sigit SUNARTA;Rini PUJIARTI;Denny IRAWATI;Rizki ARISANDI;Riska DWIYANNA;Robertus Danu PRIYAMBODO
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권2호
    • /
    • pp.118-133
    • /
    • 2024
  • The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

술폰화 PP-g-Styrene 중공사 이온교환막의 합성과 BSA 단백질 분리에 관한 연구 (Synthesis of Sulfonated Hollow PP-g-Styrene Fibrous Ion-exchange Membrane and Separation of BSA Protein)

  • 황택성;이진혁
    • 폴리머
    • /
    • 제26권4호
    • /
    • pp.415-421
    • /
    • 2002
  • E-beam 전조사법을 이용하여 HPP-g-styrene 공중합체와 술폰화 반응을 통한 술폰화 HPP-g-styrene 섬유이온교환체를 합성하였다. 그라프트율은 스티렌 단량체 농도가 증가함에 따라 증가하였으며 스티렌 단량체 농도가 80%에서 그라프트율이 128%로 최대를 나타냈다. 술폰화율은 그라프트율이 증가함에 따라 증가하는 경향을 나타내었으며, 그라프트율이 100%일 때 13.4%로 최대값을 나타내었다. 술폰화 HPP-g-styrene 섬유이온교환체의 이온교환용량은 약 3.42 meq/g으로써 흡착 성능이 매우 우수한 소재임을 확인하였다. BET 분석결과 술폰화 HPP-g-styrene의 비표면적은 62.54 $m^2/g$, 기공크기는 25 $\AA$으로 반응전보다 비표면적은 감소하였고 기공크기는 약간 증가하는 경향을 보였다. 또한 Bovine Serum Albumin (BSA) 흡착 실험 결과 술폰화도가 증가함에 따라 BSA 흡착 용량이 증가하는 경향을 나타내었으며, 술폰화도 13.4%에서 BSA 흡착용량 3.8 mg/g으로 최대를 나타내었다. 따라서 본 연구에서 합성한 섬유이온교환체가 BSA 흡착.분리에 적합한 소재임을 확인하였다.

알루미나에 의한 Fission 몰리브덴의 흡착과 탈착 특성 (Adsorption and Desorption Characteristics of Fission Molybdenum on Alumina)

  • 조경태;정원명;이종대
    • 한국안전학회지
    • /
    • 제12권3호
    • /
    • pp.97-105
    • /
    • 1997
  • Mo-99(Molybdenum) is the only source of Tc-99m(Technetium) which is most frequently used in nuclear medical diagnostics and the demand is on the increase recently. Separation and refining of Mo-99 was investigated by adsorption and desorption on alumina. At pH=0.63, adsorption isotherm of Mo was fitted by Redlich & Peterson equation using the adsorption experimental data. It was found that the pore diffusion model ($D_p=1.4{\times}10^{-6}cm^2/s, K_f/=0.4 cm/s$) agreed well with batch adsorption experimental data. RTDs(Residence Time Distributions ) were measured and axial dispersion coefficients were obtained in the fixed bed absorber according to the changes of the flow rate using 0.05% -NaCl. From the adsorption experimental data, it was shown that the behavior of breakthroughs depended on flow rate. Mo recovery yield was increased as adsorption flow rate was increased and desorption flow rate was decreased.

  • PDF

Comparative Evaluation of Three Purification Methods for the Nucleocapsid Protein of Newcastle Disease Virus from Escherichia coli Homogenates

  • Tan Yan Peng;Ling Tau Chuan;Yusoff Khatijah;Tan Wen Siang;Tey Beng Ti
    • Journal of Microbiology
    • /
    • 제43권3호
    • /
    • pp.295-300
    • /
    • 2005
  • In the present study, the performances of conventional purification methods, packed bed adsorption (PBA), and expanded bed adsorption (EBA) for the purification of the nucleocapsid protein (NP) of Newcastle disease virus (NDV) from Escherichia coli homogenates were evaluated. The conventional methods for the recovery of NP proteins involved multiple steps, such as centrifugation, precipitation, dialysis, and sucrose gradient ultracentrifugation. For the PBA, clarified feedstock was used for column loading, while in EBA, unclarified feedstock was used. Streamline chelating immobilized with $Ni^{2+}$ ion was used as an affinity ligand for both PBA and EBA. The final protein yield obtained in conventional and PBA methods was $1.26\%$ and $5.56\%$, respectively. It was demonstrated that EBA achieved the highest final protein yield of $9.6\%$ with a purification factor of 7. Additionally, the total processing time of the EBA process has been shortened by 8 times compared to that of the conventional method.

벼와 옥수수 부산물로 제조한 바이오차의 NH4+ 흡착 특성 평가 (Adsorption Characteristics of NH4+ by Biochar Derived from Rice and Maize Residue)

  • 강윤구;이재한;천진혁;오택근
    • 한국환경농학회지
    • /
    • 제40권3호
    • /
    • pp.161-168
    • /
    • 2021
  • BACKGROUND: Biochar has ability to reduce N loss, increase crop yield, and sequestrate carbon in the soil However, there is still limited study concerning the interactive effects of various biochars on NH3 loss and plant growth. This study, therefore, was conducted to investigate the NH4+ adsorption characteristics of biochar derived from rice and maize residues. METHODS AND RESULTS: By-products were pyrolyzed under oxygen-limited conditions at 300-700℃ for 1 hour and used for experiment of NH4+ adsorption in aqueous solution. The adsorption characteristics of biochar were studied using Langmuir isotherm. Biochar yield and hydrogen content decreased with increasing pyrolysis temperatures, whereas pH, EC, and total carbon content increased. The biochar pyrolyzed at lower temperatures was more efficient at NH4+ adsorption than those produced at higher temperatures. In addition, the RL values, indicating equilibrium coefficient were between 0 and 1, confirming that the result was suitable for Langmuir isotherm. CONCLUSION: The maize stalk biochar pyrolyzed at 300℃ was the most efficient to adsorb NH4+ from the aqueous solution. Furthermore, the adsorption results of this experiment were lower than those of other prior studies, which were ascribed to different experimental conditions such as ingredients, and pyrolysis conditions.

광그라프팅에 의한 폴리프로필렌 부직포의 복합기능화 가공(II) -스티렌의 그라프트 반응 및 암모니아 흡착거동 - (Multi-functional Finish of Polypropylene Nonwoven by Photo-induced Graft Polymerization (II) - Grafting of Styrene and Its Ammonia Adsorption Behavior -)

  • 김상률;최창남
    • 폴리머
    • /
    • 제25권5호
    • /
    • pp.642-648
    • /
    • 2001
  • 암모니아 흡착제를 제조하기 위하여 먼저 광(자외선)조사법으로 스티렌을 폴리프로필렌 부직포에 그라프트 중합시키고, 이를 술폰화한 다음에 금속이온과 반응시켜 금속 착체를 제조하였다. 스티렌 농도가 증가할수록 그라프트율은 증가하였으며, 반응시간이 길어질수록 그라프크율은 증가하였다. 한편 제조된 각종 시료의 암모니아 흡착 능력은 치환된 술폰산기의 함량, 흡착시판 및 암모니아 기체 압력이 증가할수록 증가하였으며, 술폰산기의 함량이 4.25 mmol $H^+$/g인 시료의 경우에 6.51 mmol/g의 흡착량을 나타내었다. 금속이온을 착물로 한 시료는 착물화 전의 시료에 비해 흡착능이 우수하였으며, $cO^{+2}$를 착물로 한 경우에 9.90mmo1/g의 암모니아 흡착능을 나타내어, 기존의 활성탄이나 실리카겔보다 효과가 우수하였다.

  • PDF