• Title/Summary/Keyword: adsorption thermodynamics

Search Result 42, Processing Time 0.021 seconds

Equilibrium, Isotherm, Kinetic and Thermodynamic Studies for Adsorption of 7-Epi-10-deacetylpaclitaxel from Taxus chinensis on Sylopute (실로퓨트에 의한 Taxus chinensis 유래 7-에피-10-디아세틸파클리탁셀의 흡착에 대한 평형, 등온흡착식, 동역학 및 열역학적 특성)

  • Park, Sae-Hoon;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.113-121
    • /
    • 2020
  • In batch experiments, the adsorption of 7-epi-10-deacetylpaclitaxel was studied using Sylopute. Experimental equilibrium data were applied to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Among the four isotherm models tested, the Langmuir isotherm model gave the highest accuracy. The adsorption capacity was found to decrease with increases in temperature and the adsorption of 7-epi-10-deacetylpaclitaxel onto Sylopute was a favorable physical process. Adsorption kinetic data agreed very well with the pseudo-second-order kinetic model, while boundary layer diffusion and intraparticle diffusion did not play a key role in the adsorption process. The process of 7-epi-10-deacetylpaclitaxel adsorption onto Sylopute was exothermic and nonspontaneous. Also, the adsorption isosteric heat was independent of surface loading indicating an energetically homogeneous adsorbent.

Adsorption Kinetics and Thermodynamics of Brilliant Blue FCF Dye onto Coconut Shell Based Activated Carbon (야자계 활성탄에 의한 Brilliant Blue FCF 염료의 흡착 동력학 및 열역학에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.309-314
    • /
    • 2015
  • Adsorption of brilliant blue FCF dye from aqueous solution using coconut shell based activated carbon was investigated. Batch experiments were carried out as function of adsorbent dose, initial concentration, contact time and temperature. The equilibrium adsorption data were analyzed by Langmuir and Freundlich model. The results indicate that Freundlich model provides the best correlation of the experimental data. Base on the estimated Freundlich constant (1/n=0.129~0.212), this process could be employed as effective treatment method. Adsorption kinetics experimental data were modeled using the pseudo-first-order and pseudo-second-order kinetic equation. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Base on the negative Gibbs free energy value (-4.81~-10.33 kJ/mol) and positive enthalpy value (+78.59 kJ/mol) indicate that the adsorption is spontaneous and endothermic process.

Equilibrium and Kinetic Studies of the Biosorption of Dissolved Metals on Bacillus drentensis Immobilized in Biocarrier Beads

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Environmental Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out to quantify the biosorption of Pb(II) and Cu(II) by the biocarrier beads. The parameters obtained from the thermodynamic analysis revealed that the biosorption of Pb(II) and Cu(II) by biomass immobilized in biocarrier beads was a spontaneous, irreversible, and physically-occurring adsorption phenomenon. Comparing batch experimental data to various adsorption isotherms confirmed that Koble-Corrigan and Langmuir isotherms well represented the biosorption equilibrium and the system likely occurred through monolayer sorption onto a homogeneous surface. The maximum adsorption capacities of the biocarrier beads for Pb(II) and Cu(II) were calculated as 0.3332 and 0.5598 mg/g, respectively. For the entire biosorption process, pseudo-second-order and Ritchie second-order kinetic models were observed to provide better descriptions for the biosorption kinetic data. Application of the intra-particle diffusion model showed that the intraparticle diffusion was not the rate-limiting step for the biosorption phenomena. Overall, the dead biomass immobilized in polysulfone biocarrier beads effectively removed metal ions and could be applied as a biosorbent in wastewater treatment.

Entropy, enthalpy, and gibbs free energy variations of 133Cs via CO2-activated carbon filter and ferric ferrocyanide hybrid composites

  • Lee, Joon Hyuk;Suh, Dong Hack
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3711-3716
    • /
    • 2021
  • The addition of ferric ferrocyanide (Prussian blue; PB) to adsorbents could enhance the adsorption performance of 133Cs. Toward this goal, we present a heterogeneously integrated carbonaceous material platform consisting of PB in direct contact with CO2-activated carbon filters (PB-CACF). The resulted sample retains 24.39% more PB than vice versa probed by the ultraviolet-visible spectrometer. We leverage this effect to capture 133Cs in the aqueous environment via the increase in ionic strength and micropores. We note that the amount of PB was likely to be the key factor for 133Cs adsorption compared with specific surface characteristics. The revealed adsorption capacity of PB-CACF was 21.69% higher than the bare support. The adsorption characteristics were feasible and spontaneous. Positive values of 𝜟Ho and 𝜟So show the endothermic nature and increased randomness. Based on the concept of capturing hazardous materials via hazardous materials, our work will be of interest within the relevant academia for collecting radionuclides in a sufficient manner.

Adsorption of Bisphenol A Using Dried Rice Husk: Equilibrium, Kinetic and Thermodynamic Studies

  • Balarak, Davoud;Mostafapour, Ferdos Kord;Lee, Seung Mok;Jeon, Choong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.316-323
    • /
    • 2019
  • The adsorption of bisphenol A from an aqueous solution onto dried rice husk was investigated. Batch adsorption experiments were performed as a function of the pH, contact time, bisphenol A concentration, adsorbent dose and temperature. The concentration of Bisphenol A was measured by HPLC. The results showed that bisphenol A removal was highest at a solution pH value of 3, adsorbent dose of 4 g/L, and contact time of 75 min. The bisphenol A removal percentage decreased from 99.1 to 66.7%, when the bisphenol A concentration increased from 10 to 200 mg/L. The Langmuir isotherm and pseudo-second order kinetics provided the best fit for the experimental data. Thermodynamic parameters such as ${\Delta}G^0$, ${\Delta}H^0$ and ${\Delta}S^0$ were also evaluated and it was found that the sorption process was feasible, spontaneous and exothermic in nature. Overall, the studied absorbent can be used as an effective and low cost material to treat the industrial wastewater and aqueous solution containing phenolic compounds.

Theoretical Overview of Membrane Transport (막물질 이동의 이론적 고찰)

  • Park, Young
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.94-107
    • /
    • 1993
  • Many researchers have discussed how membrane performance can be enhanced through an understanding of polymer science and engineering. The understandings of transport in porous membrane are used to achieve the isolation of certain components from mixtures. Particular emphasis is placed on the applicability of membrane separations for the isolation of macromolecules[1]. An awareness of membrane structure characteristics is required for the rational design of membranes for specific and/or new applications. This understanding rests on the knowledge of fields such as polymer thermodynamics[2], polymer adsorption [3, 4], diffusion in polymers[5, 6], reaction mechanism[7], and the dynamic behavior[8, 9] of polymer in porous membrane.

  • PDF

Removal of different anionic dyes from aqueous solution by anion exchange membrane

  • Khan, Muhammad Ali;Khan, Muhammad Imran;Zafar, Shagufta
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.259-277
    • /
    • 2017
  • Adsorption is a widely used technique for the removal of dyes from wastewaters by variety of adsorbents. In this work, the main focus is on the potential assessment of anion exchange membrane for the removal of different dyes using batch system and investigation of experimental data by applying various kinetic and thermodynamic models. The removal of anionic dyes i.e., Eosin-B, Eriochrome Black-T and Congo Red by anion exchange membrane BII from aqueous solution was carried out and effect of various parameters such as contact time, membrane dosage, temperature and ionic strength on the percentage removal of anionic dyes was studied. The experimental data was assessed by kinetic models namely pseudo-first-order, pseudo-second-order, Elovich liquid film diffusion, Bangham and the modified Freundlich models equation have been used to analyze the experimental data. These results indicate that the adsorption of these anionic dyes on BII follows pseudo-second-order kinetics with maximum values of regression coefficient (0.992-0.998) for all the systems. The adsorption of dyes was more suitable to be controlled by a liquid film diffusion mechanism. The adsorptive removal of dye Eosin-B and Eriochrome Black-T were decreased with temperature and thermodynamic parameters such as free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$) and entropy (${\Delta}S^o$) for adsorption of dyes on membrane BII were calculated at 298 K, 308 K and 318 K. The values of enthalpy and entropy were negative for EB and EBT representing that the adsorption of these dyes on BII is physiosorptive and exothermic in nature. Whereas the positive values of enthalpy and entropy for CR adsorption on BII, indicating that its adsorption is endothermic and spontaneous in nature. It is evident from this study that anion exchange membrane has shown good potential for the removal of dyes from aqueous solution and it can be used as adsorbent for dues removal on commercial levels.

Isotherms, Kinetics and Thermodynamic Parameters Studies of New Fuchsin Dye Adsorption on Granular Activated Carbon (입상 활성탄에 대한 New Fuchsin 염료흡착의 등온선, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Batch adsorption studies including equilibrium, kinetics and thermodynamic parameters for the adsorption of new fuchsin dye using granular activated carbon were investigated with varying the operating variables such as initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Dubinin-Radushkevich and Temkin isotherms. Adsorption equilibrium was mostly well described by Langmuir Isotherm. From the estimated separation factor of Langmuir ($R_L$ = 0.023), and Freundlich (1/n = 0.198), this process could be employed as an effective treatment for the adsorption of new fuchsin dye. Also based on the adsorption energy (E = 0.002 kJ/mol) from Dubinin-Radushkevich isotherm and the adsorption heat constant (B = 1.920 J/mol) from Temkin isotherm, this adsorption is physical adsorption. From kinetic experiments, the adsorption reaction processes were confirmed following the pseudo second order model with good correlation. The intraparticle diffusion was a rate controlling step. Thermodynamic parameters including changes of free energy, enthalpy, and entropy were also calculated to predict the nature of adsorption. The change of enthalpy (92.49 kJ/mol) and activation energy (11.79 kJ/mol) indicated the endothermic nature of adsorption processes. The change of entropy (313.7 J/mol K) showed an increasing disorder in the adsorption process. The change of free energy found that the spontaneity of process increased with increasing the adsorption temperature.

Statistical thermodynamics of Physical Adsorption of Benzene and p-Xylene (벤젠과 p-크실렌의 물리흡착에 대한 통계열역학적 고찰)

  • Ahn Woon-Sun;Lee Kwang Soon;Gwak, Hyeon Tae
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.289-294
    • /
    • 1978
  • In this paper, for the purpose of studying the adsorbed states of benzene and p-xylene molecules on both of the Spheron 6(graphitized carbon) and the Alucer(aluminium oxides), we have calculated the differential molar entropies of adsorption in the Submonolayer region, by the use of statistical thermodynamics. The models we have adopted are two-dimensional gases and the harmonic oscillators. The values calculated in this way are compared with experimental values. As a result, it is believed that the adsorbed benzene molecules are localized on the Spheron 6, whereas on the Alucer it is nonlocalized. The molecular frequency, which is an adjustable parameter and is introduced as a result of oscillator model is $10^{11}\;sec^{-1}$ in the order of magnitude. For the case of p-xylene molecules adsorbed on these adsorbents, an abnormal result is obtained quite prior to the monolayer coverage, contrarily to the expectation of similar results as for the case of benzene.

  • PDF

Synthesis and Characterization of Adsorbent for Pb(II)-capture by using Glow Discharge Electrolysis Plasma

  • Gao, Jinzhang;Wang, Youdi;Yang, Wu;Li, Yan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.406-414
    • /
    • 2010
  • A novel polyacrylamide grafted hydrous ferric oxide adsorbent composite has been synthesized by using glow discharge electrolysis plasma. To optimize the synthesis conditions, the following parameters were examined in detail: applied power, discharge time, post polymerization temperature, post polymerization time, amount of crosslinking agent and hydrous ferric oxide gel added and so on. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The removal percentage of the adsorbent in Pb(II) solution was examined and the data obtained showed that the adsorbent composite has a high capacity for lead ion. For the use in wastewater treatment, the thermodynamic and kinetic of Pb(II)-capture were also studied. Results indicated that the adsorption reaction was a spontaneous and an endothermic process, and it seems to be obeyed a pseudo-secondorder rate model. Moreover, the adsorption isotherm of Pb(II)-capture is following the Langmuir and Freundlich isotherm models.