• Title/Summary/Keyword: adsorption removal

Search Result 1,345, Processing Time 0.022 seconds

Performance Evaluation of Manhole Filter to Remove Odor Inside Sewage Pipe -Focused on Removal of Hydrogen sulfide- (하수관거 악취 제거를 위한 맨홀필터 악취제거장치 성능 평가 - 황화수소 제거를 중심으로 -)

  • Kim, Choong-Gon;Lee, Jang-Hown
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.4
    • /
    • pp.45-51
    • /
    • 2018
  • The objective of this study is to evaluate the applicability of a manhole-filter odor eliminator that is installed on a manhole to remove hydrogen sulfide ($H_2S$) contained in the sewage of urban streets; $H_2S$ is the very cause of offensive odor from such sewage. An analysis of the capability of impregnated activated carbon, which is contained in the manhole filter, to adsorb hydrogen sulfide shows that some 99.8% of hydrogen sulfide can be removed. A performance evaluation of the manhole-filter odor eliminator, which was made on Manhole Section 4 known as the representative malodorous manhole section of Seoul, Korea, indicates that more than 97% of hydrogen sulfide ($H_2S$), one of typical malodor-generating substances, can be eliminated. The results and findings of the study as described above suggest that the applicability of the manhole-filter odor eliminator to eliminate offensive odor generated from sewer manholes is satisfactory.

SOx and NOx removal performance by a wet-pulse discharge complex system (습식-펄스방전 복합시스템의 황산화물 및 질소산화물 제거성능 특성)

  • Park, Hyunjin;Lee, Whanyoung;Park, Munlye;Noh, Hakjae;You, Junggu;Han, Bangwoo;Hong, Keejung
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Current desulfurization and denitrification technologies have reached a considerable level in terms of reduction efficiency. However, when compared with the simultaneous reduction technology, the individual reduction technologies have issues such as economic disadvantages due to the difficulty to scale-up apparatus, secondary pollution from wastewater/waste during the treatment process, requirement of large facilities for post-treatment, and increased installation costs. Therefore, it is necessary to enable practical application of simultaneous SOx and NOx treatment technologies to remove two or more contaminants in one process. The present study analyzes a technology capable of maintaining simultaneous treatment of SOx and NOx even at low temperatures due to the electrochemically generated strong oxidation of the wet-pulse complex system. This system also reduces unreacted residual gas and secondary products through the wet scrubbing process. It addresses common problems of the existing fuel gas treatment methods such as SDR, SCR, and activated carbon adsorption (i.e., low treatment efficiency, expensive maintenance cost, large installation area, and energy loss). Experiments were performed with varying variables such as pulse voltage, reaction temperature, chemicals and additives ratios, liquid/gas ratio, structure of the aeration cleaning nozzle, and gas inlet concentration. The performance of individual and complex processes using the wet-pulse discharge reaction were analyzed and compared.

Radon Reduction Performance of Adsorbent for Making Radon-Reducing Functional Board (라돈 저감형 기능성 보드제작을 위한 흡착재의 라돈 저감 성능)

  • Kim, Ki-Hoon;Pyeon, Su-Jeong;Kim, Yeon-Ho;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.139-147
    • /
    • 2019
  • In this study, an experiment was conducted to evaluate the properties of cement matrix using diatomite and silica gel as adsorbents of radon. The adsorption properties of diatomite of a natural adsorbent and silica gel of an artificial sorbent were examined to confirm the reduction of radon gas concentration of the removal of radon gas in the indoor environment of the human body. We conducted a performance evaluation for the study. The fluidity, air content, density, absorption, flexural failure load, thermal conductivity and radon gas concentration of the specimen using diatomite and silica gel were measured. the fluidity and the air content of the adsorbed matrix with diatomite were decreased as the diatomite replacement ratio increased. Which seems to affect the subsequent matrix by the absorption of the compounding water of diatomite. As the replacement rate of silica gel increased, the fluidity decreased and the air content increased up to constant replacement rate. It is judged that the surface of the silica gel has a critical point at which it can react with moisture.

A Review on Ceramic Based Membranes for Textile Wastewater Treatment (염색폐수의 처리를 위한 세라믹 분리막에 대한 고찰)

  • Kwak, Yeonsoo;Rajkumar, Patel
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.100-108
    • /
    • 2022
  • Among various industries, the textile industry uses the largest amount of water for coloring textiles which leads to a large amount of wastewater containing various kinds of dye. There are various methods for the removal of dye such as flocculation, ozone treatment, adsorption, etc. But these processes are not much successful due to the issue of recycling which enhances the cost. Alternatively, the membrane separation process for the treatment of dye in wastewater is already documented as the best available technique. Polymeric membrane and ceramic membrane are two separate groups of separation membranes. Advantages of ceramic membranes include the ease of cleaning, long lifetime, good chemical and thermal resistance, and mechanical stability. Ceramic membranes can be prepared from various sources and natural materials like clay, zeolite, and fly ash are very cheap and easily available. In this review separation of wastewater is classified into mainly three groups: ultrafiltration (UF), microfiltration (MF), and nanofiltration (NF) process.

Comparative Analysis of the Phyto-compounds Present in the Control and Experimental Peels of Musa paradisiaca used for the Remediation of Chromium Contaminated Water

  • Kaniyappan, Vidhya;Rathinasamy, Regina Mary;Manivanan, Job Gopinath
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.166-176
    • /
    • 2022
  • Banana peels are also widely used as bio-adsorbent in the removal of chemicals contaminants and heavy metals from water and soil. GC-MS plays an essential role in the phytochemical analysis and chemo taxonomic studies of medicinal plants containing biologically active components. Intrinsically, with the use of the flame ionization detector and the electron capture detector which have very high sensitivities, Gas chromatography can quantitatively determine materials present at very low concentrations and most important application is in pollution studies. In the present study banana peels were used as bio-adsorbent to remediate the heavy metal contaminated water taken from three different stations located around the industrial belts of Ranipet, Tamilnadu, India. The AAS analysis of the samples shows a decrement of chromium concentration of 98.93%, 96.16% and 96.5% in Station 1, 2 and 3 respectively which proves the efficiency of the powdered peels of Musa paradisiaca. The GC-MS analysis of the control and treated peels of Musa paradisiaca reveals the presence of phytochemicals like Acetic Acid, 1-Methylethyl Ester, DL-Glyceraldehyde Dimer, N-Hexadecanoic Acid, 3-Decyn-2-Ol, 26-Hydroxy, Cholesterol, Ergost-25-Ene-3,5,6,12-Tetrol, (3.Beta.,5.Alpha.,6.Beta.,12.Beta.)-, 1-Methylene-2b-Hydroxymethyl-3, and 3-Dimethyl-4b-(3-Methylbut-2-Enyl)-Cyclohexane in the control banana peels. The banana peels which were used for the treatment reveals the changes and alteration of the phytochemicals. It is concluded that the alteration in phytochemicals of the experimental banana peels were due to adsorption of chromium heavy metal from the sample.

Raoultella ornithinolytica as a Potential Candidate for Bioremediation of Heavy Metal from Contaminated Environments

  • Laila Ibrahim Faqe Salih;Rezan Omer Rasheed;Sirwan Muhsin Muhammed
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.895-908
    • /
    • 2023
  • Disposal of waste containing heavy metals into the environment is a major threat to human health and can result in toxic or chronic poisoning in aquatic life. In the current study, metal-resistant Raoultella ornithinolytica was isolated from metal-contaminated samples collected from the Tanjaro River, located southwest of Sulaymaniyah, Iraq. R. ornithinolytica was identified by partial amplification of 16S rRNA. The uptake potency of heavy metals was assessed using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and indicated that R. ornithinolytica removed 67, 89, 63.4, 55.6, 56.5, 65, and 61.9% of Cd, Pb, Cr, Ni, Zn, Co, and Fe, respectively. These removal rates were influenced by temperature, pH, and contact time; at 35℃ and pH 5 with a change in the incubation time, the reduction rate improved from 89 to 95% for Pb, from 36.4 to 45% for Cu, and from 55.6 to 64% for Ni. Gene analysis indicated that R. ornithinolytica contained pbrT, chrB, nccA, iroN, and czcA genes, but the pcoD gene was absent. Energy-dispersive X-ray spectroscopy (EDS) images showed evidence of metal ion binding on the cell wall surface with different rates of binding. Transmission electron microscopy (TEM) detected different mechanisms for metal particle localization; cell surface adsorption was the main mechanism for Pb, Zn, and Co uptake, while Cd, Ni, and Fe were accumulated inside the cell. The current study describes, for the first time, the isolation of R. ornithinolytica from metal-contaminated water, which can be used as an eco-friendly biological expedient for the remediation and detoxification of metals from contaminated environments.

Sources of Alkylphenol Polyethoxylate and their Fate in the Central Nakdong River Basin (낙동강 중류 수계에 있어서 Alkylphenol Polyethoxylate의 오염원과 잔류특성)

  • Lee, Se-Han;Lee, Shun-Hwa;Lee, Chul-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1277-1284
    • /
    • 2005
  • Alkylphenol Polyethoxylate(APEs) and their metabolites were determined in the aquatic environment in the central Nakdong river basin. The concentrations of APE's ranged between $0.62{\sim}11.70\;{\mu}g/L$ from the Nakdong and the Kumho rivers, and were $70.00{\sim}212.50\;{\mu}g/L$ in the samples from the 3rd industrial complex stream and the Dalseo stream, which are both heavily polluted by industrial wastewater and domestic wastewater. The APEs revealed a removal rate of more than 87% by biodegradation and adsorption etc. in the wastewater treatment plant. Nonylphenol polyethoxylates(NPnEO) and Nonylphenol carboxylic acid(NPnEC) consisted of APE metabolites shifted from NP($n=4{\sim}10$)EO and NP($n=4{\sim}10$)EC to NP($n=1{\sim}3$)EO and NP($n=1{\sim}3$)EC or removed by the adsorption of activated sludge during the biological wastewater treatment process. Upper streams have a higher distributed rate of NP($n=7{\sim}10$)EO than water downstream. Continuous monitoring is necessary for non-point sources as well as point sources, such as a wastewater treatment plant. Effluent concentrations of nonylphenol(NP) in industrial wastewater and domestic wastewater averaged about 4.33 and $1.70\;{\mu}g/L$, respectively. In addition, the removal rate average was 90% in the wastewater treatment plant. NP concentrations in the rivers did not exceed $1.0\;{\mu}g/L$, which are prescribed by environmental risk concentration in the USA and Europe. However, NP required continuous monitoring, which detected over $0.1\;{\mu}g/L$ in all river areas.

Characterization of Burcucumber Biochar and its Potential as an Adsorbent for Veterinary Antibiotics in Water (가시박 유래 바이오차의 특성 및 항생물질 흡착제로서의 활용가능성 평가)

  • Lim, Jung Eun;Kim, Hae Won;Jeong, Se Hee;Lee, Sang Soo;Yang, Jae E;Kim, Kye Hoon;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.1
    • /
    • pp.65-72
    • /
    • 2014
  • Biochar (BC) from biomass pyrolysis is a carbonaceous material that has been used to remove various contaminants in the environment. The eliminatory action for burcucumber (Sicyos angulatus L.) as an invasive plant is being consistently carried out because of its harmfulness and ecosystem disturbance. In this study, burcucumber biomass was converted into BCs at different pyrolysis temperatures of 300 and $700^{\circ}C$ under a limited oxygen condition. Produced BCs were characterized and investigated to ensure its efficiency on antibiotics' removal in water. The adsorption experiment was performed using two different types of antibiotics, tetracycline (TC) and sulfamethazine (SMZ). For the BC pyrolyzed at a high temperature ($700^{\circ}C$), the values of pH, electrical conductivity, and the contents of ash and carbon increased whereas the yield, mobile matter, molar ratios of H/C and O/C, and functional groups decreased. Results showed that the efficiency of BCs on antibiotics' removal increased as pyrolysis temperature increased from 300 to $700^{\circ}C$ (38 to 99% for TC and 6 to 35% for SMZ). The reaction of ${\pi}-{\pi}$ EDA (electron-donor-acceptor) might be involved in antibiotics' adsorption to BCs. BC has potential to be a superior antibiotics' adsorbent with environmental benefit by recycling of waste/invasive biomass.

Oxidative Desulfurization of Marine Diesel Using Keggin Type Heteropoly Acid Catalysts (Keggin형 헤테로폴리산 촉매를 이용한 선박용 경유의 산화 탈황)

  • Oh, Hyeonwoo;Woo, Hee Chul
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.91-97
    • /
    • 2019
  • Oxidative desulfurization (ODS) has received much attention in recent years because refractory sulfur compounds such as dibenzothiophenes can be oxidized selectively to their corresponding sulfoxides and sulfones, and these products can be removed by extraction and adsorption. In this work, The oxidative desulfurization of marine diesel fuel was performed in a batch reactor with hydrogen peroxide ($H_2O_2$) in the presence of various supported heteropoly acid catalysts. The catalysts were characterized by XRD, XRF, XPS and nitrogen adsorption isotherm techniques. Based on the sulfur removal efficiency of promising silica supported heteropoly acid catalysts, the ranking of catalytic activity was: $30\;H_3PW_{12}/SiO_2$ > $30\;H_3PMo_{12}/SiO_2$ > $30\;H_4SiW_{12}/SiO_2$, which appears to be related with their intrinsic acid strength. The $30\;H_3PW_{12}/SiO_2$ catalyst showed the highest initial sulfur removal efficiency of about 66% under reaction conditions of $30^{\circ}C$, $0.025g\;mL^{-1}$ (cat./oil), 1 h reaction time. However, through the recycle test of the $H_3PW_{12}/SiO_2$ catalyst, significant deactivation was observed, which was attributed to the elution of the active component $H_3PW_{12}$. By introducing cesium cation ($Cs^+$) into the $H_3PW_{12}/SiO_2$ catalyst, the stability of the catalyst was improved with changing the solubility, and the $Cs^+$ ion exchanged catalyst could be recycled for at least five times without severe elution.

A Study of the Utilization of Feldspathic Sand as a Fortified Functional Filtering Material for Water Purification (고 기능성 수질 정화 여과재로서의 장석질 모래 활용연구)

  • 고상모;송민섭;홍석정
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.283-293
    • /
    • 2003
  • Domestic water treatment plants operate the rapid and slow filtering system using the filtering sands. Most of them are composed of beach sands, which have less sorption capacity of heavy metals as well as organic contaminants. Therefore, the development of fortified functional filtering materials with high removal capacity of organic and inorganic contaminants is needed to prevent the unexpected load of contaminated source water. This study aims to test the hydrochemical change and the removing capacity of heavy metals such as Cd, Cu, and Pb on the Jumunjin sand, feldspathic sand(weathering product of Jecheon granite), feldspathic mixing sand I(feldspathic sand mixed with 10 wt% zeolite), and feldspathic mixing sand II (feldspathic sand mixed with 20 wt% zeolite). Feldspathic mixing sand I and II showed the eruption of higher amounts of cations and anions compared with the Jumunjin sand and feldspathic sand. They also showed higher eruption of Si, Ca, $SO_4$ ions than that of Al, $NO_3$, Fe, K, Mg, and P. Feldspathic mixing sand II caused higher eruption of some cations of Na, Ca, Al than feldspathic mixing sud I, which is the result controlled by the dissolution of zeolite. Jumunjin sand and feldspathic sand showed very weak sorption of Cd, Cu and Pb. In contrast to this, feldspathic mixing sand I and II showed the high sorption and removal capacity of the increasing order of Cd, Cu and Pb. Feldspathic mixing sand II including 20% zeolite showed a fortified removal capacity of some heavy metals. Therefore, feldspathic mixing sand mixed with some contents of zeolite could be used as the fortified filtering materials for the water filtering and purification in the domestic water treatment plants.