• Title/Summary/Keyword: adsorption ratio

Search Result 614, Processing Time 0.035 seconds

Recovery of Tin from Waste Tin Plating Solution by Ion Exchange Resin (주석도금폐액으로부터 이온교환수지를 이용한 주석 회수)

  • Shin, Gi-Wung;Kang, Yong-Ho;Ahn, Jae-Woo;Hyeon, Seung-Gyun
    • Resources Recycling
    • /
    • v.24 no.3
    • /
    • pp.51-58
    • /
    • 2015
  • In order to recover tin from the waste tin plating solution, we used the ion exchange method using three types of ion exchange resins. The ion exchange resin with tertiary functional group(Lewatit TP 272) has not adsorption ratio of tin. The ion exchange resin with iminodiacetic functional group(Lewatit TP 207) has high adsorption ratio of tin, but impurity content in the recovered tin solution was relatively high. Whereas, in case of the ion exchange resin with functional group of ethylhexyl-phosphate(Lewatit VP OC 1026), adsorption ratio of tin was less than that of Lewatit TP 207. However, it was possible to remove impurities in the recovered tin solution by controlling the pH of the solution. High purity tin solution can be recovered by removing the organic materials with water washing process.

A Study on the Accumulation Phenomena of Oxidized Starch in White Water in Closed Fine Papermaking Process (Part 1) -Effect of Papermaking system closure- (백상지 공정 폐쇄화에 따른 백수 내 산화전분의 축적 현상에 관한 연구 (제1보) -공정 폐쇄화의 영향-)

  • Ahn, Hyun-Kyun;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.3
    • /
    • pp.15-34
    • /
    • 2004
  • Diverse benefits such as reduction of fresh water consumption and effluent discharge, efficient use of raw materials and energy savings can be obtained by papermaking system closure. Closure of papermaking processes, however, causes many problems including reduction of the efficiency of additives, decrease of retention and dewatering, felt plugging, poor Paper quality, generation of slime and odor, poor vacuum efficiency, etc, and it has been recognized that accumulation of Inorganic and organic substances in the process white water is the prime cause of these problems. Therefore, technological developments for preventing accumulation of these detrimental substances are urgently required for Implementing papermaking system closure. Understanding of the accumulation phenomena of the inorganic and organic substances in the papermaking process white water is prerequisite for papermaking system closure. In this study a process simulation method was used to analyze the accumulation phenomena of anionic starch In the process white water as the closure level of a fine paper making process is increased. A pilot paper machine was used as a model process. Starch adsorption and desorption models were developed based on the concept of starch adsorption ratio, which was not considered in previous studies. Steady state simulation studies were carried out based on this model using a commercial simulator. In steady state simulation, the variation of dissolved starch concentration in each process unit was monitored as a function of white water usage for wire shower. The result of the steady state simulation showed that dissolved starch concentration and its increase ratio in Process units increased as white water usage ratio for wire shower increased.

Extracting Gold from Pyrite Roster Cinder by Ultra-Fine-Grinding/Resin-in-Pulp

  • Guo, Bingkun;Wei, Junting
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.337-341
    • /
    • 2001
  • A new method to extract gold from pyrite roster cinder, which combines ultra-fine-grinding with resin-in-pulp, has been studied in this paper. Compared with traditional leaching technology, it can short leaching time, avoid complex filter process, lower sodium cyanide consumption and increase gold recovery by 35%. During leaching, aluminium oxide ball was used as stirred medium, hydrogen peroxide as leaching aid and sodium hexametaphosphate as grinding aid. With the high efficiency and chemistry effect of ultra-fine-grinding, the leaching process was developed and the gold leaching rate may reach 88%. With AM-2 Б resin as abosorber and sulfocarbamide (TU) as eluent, gold was recovered from cyanide pulp by resin-in-pulp. AM-2 Б resin has good adsorbability in cyanide solution(pH=10). It was easy to elude gold from the loaded resin with 0.1㏖/L cholhydric acid and 1㏖/L sulfocabamide. The effect of contact time, temperature and acidity etc. on the gold absorption had been examined with static methods. The results showed that the adsorption and desorption of gold could both reach over 98%. The effects of flow rate of solution on dynamic adsorption and elution of gold had been examined with dynamic methods. Breakthrough curve and elution curve had been drawn in this paper. A mild condition was determined through a number of experiments: leaching time 2 hours, liquid solid ratio 4:1, sodium cyanide 3kg/t, hydrogen peroxide 0.05%, sodium hexametaphosphate 0.05%; adsorption time 30 minutes, temperature 10-3$0^{\circ}C$, resin($m\ell$) solid(g) ratio 1:10, eluent resin ratio 10-20:1, velocity of eluent $1.5m\ell$/min. Under the mild condition, the gold recovery may reach 85%.

  • PDF

Additional Effect of Zeolite Based on Bactericidal Activated Carbon Spheres with Enhanced Adsorption Effect and Higher Ignition Temperature

  • Zhu, Lei;Ye, Shu;Asghar, Ali;Bang, Seong-Ho;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.68-74
    • /
    • 2016
  • In this study, the fabrication of zeolite combined activated carbon spherical samples was carried out as follows. Briefly, ZSM-5 zeolite and activated carbon were composed as main absorbent materials; by controlling the weight percentage of zeolite and binder materials, a series of spherical samples (AZP 4, 6, 8) were prepared. These spherical samples were characterized by BET, XRD, SEM, EDX, and pressure drop; benzene and iodine adsorption tests, bactericidal effect test, and ignition temperature test were also performed. The adsorption capability was found to depend on the BET surface area; the spherical samples AZP6 with high BET surface area of $1011m^2/g$ not only exhibited excellent removal effects for benzene (24.9%) and iodine (920mg/g) but also a good bactericidal effect. The enhanced ignition temperature may be attributed to the homogeneous dispersion conditions and the proper weight percentage ratio between zeolite and activated carbon.

Spontaneously Adsorbed Mo Layers on Pt(111) and Pt(100) Single Crystal Electrode Surfaces

  • Han, Yoon-gu;Jung, Chang-hoon;Rhee, Choong-Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.395-399
    • /
    • 2002
  • The voltammetric behavior of spontaneously adsorbing Mo layers on Pt(111) and Pt(100) electrodes has been studied to estimate the number of electrons involved in the electrochemical processes of spontaneously adsorbed Mo and the number of the bloc ked Pt sites for hydrogen adsorption. On Pt(111) and Pt(100) surfaces, the spontaneously adsorbed Mo layers showed redox peaks at 0.10 V and 0.15 V, respectively, and continuous current-potential waves in the conventional hydrogen region. Since the potential range of the Mo redox processes on both surfaces overlapped partially with the potential range of hydrogen adsorption, the variation in the ratio of the total charge of Mo and H ($Q_H$ +$Q_{MO}$) to the hydrogen charge of clean Pt electrode ($Q_H^0$) was analyzed. From the analysis, six electrons were estimated to be involved in the electrochemical processes of the spontaneously adsorbed Mo, and four Pt sites for hydrogen adsorption were calculated to be blocked by one adsorbed Mo atom. Based on these figures and the pH dependence of the Mo redox processes, we have proposed an electrochemical equation for the spontaneously adsorbed Mo. This electrochemical equation led us to conclude that the saturation coverage of the spontaneously adsorbed Mo is 0.25. The coverage of Mo less than 0.25, however, could not be determined voltammetrically due to the convolution of the charges of Mo and H.

Adsorption and Antibacterial Properties of Metal Ion Treated Activated Carbon Fiber (금속이온이 처리된 활성탄소섬유의 흡착과 항균성)

  • Oh, Won-Chun;Bang, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.131-135
    • /
    • 2000
  • We studied adsorption isotherm, surface properties and antibacterial activity of Cu treated activated carbon fiber (ACF). The BET surface area of Cu treated ACF are distributed to $688.2-887.8m^2/g$. The adsorption results show that BET surface areas move gradually to lower value with increasing treated Cu mole concentration. Using t-method, the specific micropore volumes and average pore size were obtained. From the SEM study, it is also observed that many of micropores in activated carbon fiber are blocked surface after the treatment. And we also observed that the activity of E. coli in kind of colon bacillus increases gradually to larger range with increasing Cu mole ratio. From these results, we suggest the antibacterial mechanism for metal treated ACF.

  • PDF

Role of Coverage and Vacancy Defect in Adsorption and Desorption of Benzene on Si(001)-2×n Surface

  • Oh, Seung-Chul;Kim, Ki-Wan;Mamun, Abdulla H.;Lee, Ha-Jin;Hahn, Jae-Rayng
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.162-167
    • /
    • 2010
  • We investigated the adsorption and desorption characteristics of benzene molecules on $Si(001)-2{\times}n$ surfaces using a variable-low temperature scanning tunneling microscopy. When benzene was adsorbed on a $Si(001)-2{\times}n$ surface at a low coverage, five distinct adsorption configurations were found: tight-binding (TB), standard-butterfly (SB), twisted-bridge, diagonal-bridge, and pedestal. The TB and SB configurations were the most dominant ones and could be reversibly interconverted, diffused, and desorbed by applying an electric field between the tip and the surface. The population ratios of the TB and SB configurations were affected by the benzene coverage: at high coverage, the population ratio of SB increased over that of TB, which was favored at low coverage. The desorption yield decreased with increasing benzene coverage and/or density of vacancy defect. These results suggest that the interaction between the benzene molecules is important at a high coverage, and that the vacancy defects modify the adsorption and desorption energies of the benzene molecules on Si(001) surface.

Adsorption of Toluidine Blue O onto Chitosan (키토산의 색소 Toluidine Blue O에 대한 흡착 특성)

  • Cho, Yoo-Young;Kim, Kwang-Yoon;Bom, Hee-Seung;Oh, Chang-Seok;Lee, Hyun-Chul;Park, Ro-Dong
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.447-451
    • /
    • 1995
  • Chitosan, a deacetylated polymer of chitin, was applied and characterized as an adsorbent for a dye Toluidine Blue O. The adsorption of Toluidine Blue O by chitosan was affected by the particle sire and mass of chitosan, initial dye concentration, reaction time, and solution pH. More dye was adsorbed the smaller the chitosan particles. When initial ratio of dye to chitosan was over 1 : 500, the adsorption of dye was rapidly declined. Adsorption rate of dye to chitosan showed 2 phases, rapidly occurred one at the beginning within 3 min and thereafter very slowly occurred one. The amount of dye adsorbed was increased with increase in pH.

  • PDF

Adsorption Stabilization of $TiC_{2}$ Particles in Water Soluble Block Copolymers (수용성 블록공중합물에서 산화티탄 분말의 흡착 안정화)

  • Kwan, Soun-Il;Jeong, Hwan-Kyeong;Choi, Seung-Ok;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.118-126
    • /
    • 2001
  • Micelle formation and adsorption at the $Ti0_{2}$ interface of a series of polystyrene-polythylene oxide(PS-PEO) block copolymer in aqueous solution was studied using fluorescence probing and small-angle X-ray methods. Further, the stability of aqueous $Ti0_{2}$ dispersion in the presence of copolymer was investigated by microelectrophoresis, optical density and sedimentation measurements. The dissolution of pyrene as fluorescent probe in aqueous surfactant solution leads to a slow decrease of the $I_{1}/I_{3}$ ratio, as the copolymer concentration increase; $I_{1}$ and $I_{3}$ are respectively the intensities of the first and third vibrionic peaks in the pyrene fluorescence emission. The behaviour was due to the characteristics of the copolymers and/or to the copolymer association efficiency in water. Moreover, the adsorption at the plateau level increases with decreasing PEO until chain length. The zeta potential of $TiO_{2}$ particles decreases with increasing copolymer concentration and reaches a plateau value. Finally, stabilization using block copolymers was more effective with samples having higher weight fractions of PS block.

Flexible membranes with a hierarchical nanofiber/microsphere structure for oil adsorption and oil/water separation

  • Gao, Jiefeng;Li, Bei;Wang, Ling;Huang, Xuewu;Xue, Huaiguo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.416-424
    • /
    • 2018
  • Oil spill and oily wastewater have now become a serious threat to the freshwater and marine environments. Porous materials with super-hydrophobicity and super-oleophilicity are good candidates for the oil adsorption and oil/water separation. Here, flexible hybrid nanofibrous membrane (FHNM) containing $SiO_2$/polyvinylidene fluoride (PVDF) microspheres was prepared by simultaneous electrospinning and electrospraying. The obtained FHNM combined the flexibility of the nanofiber mat and super-hydrophobicity of the microspheres, which could not be achieved by either only electrospinning or only electrospraying. It was found that when the weight ratio between the $SiO_2$ and PVDF reached a critical value, the $SiO_2$ nanoparticles were present on the PVDF microsphere surface, significantly improving the surface roughness and hence the contact angle of the FHNM. Compared with the pure electrospun PVDF nanofiber mat, most of the FHNMs have a higher oil adsorption capacity. The FHNM could separate the oil with water quickly under the gravity and displayed a high efficiency and good reusability for the oil/water separation. More importantly, the FHNM could not only separate the oil with the pure water but also the corrosive solution including the salt, acid and alkali solution.