• Title/Summary/Keyword: adsorption ammonia

Search Result 139, Processing Time 0.042 seconds

Adsorption of Amine and Sulfur Compounds by Cobalt Phthalocyanine Derivatives (코발트 프탈로시아닌 유도체에 의한 아민 및 황 화합물의 흡착)

  • Lee, Jeong Se;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.592-598
    • /
    • 2007
  • The adsorption capability of cobalt phthalocyanine derivatives was investigated by means of X-ray diffractometor (XRD), FT-IR spectroscopy, scanning electron microscopy (SEM), and temperature programmed desorption (TPD). According to TPD results for ammonia, cobalt phthalocyanine derivatives showed two desorption peaks at low temperature ($100{\sim}150^{\circ}C$) and high temperature ($350{\sim}400^{\circ}C$) indicating that there were two kinds of acidities. Tetracarboxylic cobalt phthalocyanine (Co-TCPC) has a stronger desorption peak (chemical adsorption) at high temperature and a weaker desorption peak (physical adsorption) at low temperature than cobalt phthalocyanine (Co-PC). The specific surface areas of Co-TCPC and Co-PC were 37.5 and $18.4m^2/g$, respectively. The pore volumes of Co-TCPC and Co-PC were 0.17 and $0.10cm^3/g$, respectively. The adsorption capability of triethyl amine calculated by breakthrough curve at 120 ppm of equilibrium concentration was 24.3 mmol/g for Co-TCPC and 0.8 mmol/g for Co-PC. The removal efficiencies of dimethyl sulfide of Co-TCPC and Co-PC in batch experiment of 225 ppm of initial concentration were 92 and 18%, respectively. The removal efficiencies of trimethyl amine of Co-TCPC and Co-PC in batch experiment of 118 ppm of initial concentration were 100 and 17%, respectively.

Characterization of $TiO_2$ base catalyst for de-NOx (질소산화물 제거를 위한 $TiO_2$계 촉매 제조 및 특성 시험)

  • Kim, Tae-Hoon;Jo, Young-Min;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.379-385
    • /
    • 2011
  • One of main catalysts for De-NOx in SCR is a $V_2O_5/TiO_2$, and this work formulated powdery catalysts focusing ultimately on corrugate catalytic support. The prepared catalyst consisted of anatase $TiO_2$. Amount of the added vanadium oxide determined the viscosity of catalyst slurry, which is important for washcoat for a final corrugate type catalytic reactor. The test showed a proportional relation between adsorption amount of ammonia and specific surface area. De-NOx efficiency could be obtained up to 96.3 % at $400^{\circ}C$ with a spacial velocity of $4,000hr^{-1}$.

Development of SPR Gas Sensor for Small Molecules Using Molecularly Imprinted Polymer Thin Films

  • Jang, Seong-U;Jin, Seong-Il;Park, Chan-Ryang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.242.2-242.2
    • /
    • 2011
  • Molecularly imprinted polymer thin films were applied to develop a gas sensor based on the surface plasmon resonance phenomenon for small gaseous molecules such as toluene and xylene. The imprinted polymer films were synthesized via photo-polymerization method using various combination of templates, functional monomers and cross-linkers. The temperature of pre-polymerization solutions and the power of UV light were controlled for optimized performance of gas sensing. The morphology and porosity of the polymer films were controlled by varying the mixing ratios of the pre-polymerization solutions and confirmed by atomic force microscopy. By fitting the adsorption/desorption sensorgrams to conventional kinetic models, the effects of different templates and cross-linkers were interpreted in term of the structural differences of the polymer networks formed on the gold film. The sensitivity and selectivity of sensors were estimated for toluene and xylene, and also for humidity and other gaseous molecules such as formaldehyde and ammonia.

  • PDF

Characteristics for Adsorption and Thermal Decomposition of Ammonia and Trimethylamine on Honeycomb Photocatalyst (허니컴형 광촉매에 대한 암모니아와 트리메틸아민의 흡착 및 열 분해 특성)

  • 김대중;손건석;고성혁;윤승원;송재원;강진아;이귀영;이재의
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.295-296
    • /
    • 2001
  • 동물 축사, 폐수 및 하수처리장, 피혁공장, 생선처리시설 등에서 주로 발생하는 암모니아(NH$_3$) 및 트리메틸아민(($CH_3$)$_3$N)과 같은 악취 물질 제거에 대한 많은 연구가 진행되고 있다. 악취 물질에 대한 처리 기술에는 직접 산화법, 고온 연소법, 효소분해법, 흡착법, 촉매 산화법, 플라즈마 제거법 등과 같은 악취 물질을 분해 제거하는 방법과 단순히 악취를 은폐시키는 마스킹법이 있다. (중략)

  • PDF

NO Reduction and Oxidation over PAN based-ACF

  • Kim, Je-Young;Lee, Jong-Gyu;Hong, Ik-Pyo
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.17-21
    • /
    • 2000
  • Catalytic reduction and oxidation of NO over polyacrylonitrile based activated carbon fibers (PAN-ACF) under various conditions were carried out to develop removal process of NO from the flue gas. The effect of temperature, oxygen concentration and the moisture content for the reduction of NO with ammonia as a reducing agent was investigated. The reduction of NO increased with the oxygen concentration, but decreased with the increased temperature. The moisture content in the flue gas affects the reduction of NO as the inhibition of the adsorption of the other components and the reaction on the surface of ACE For the oxidation of NO to $NO_2$ over PAN-ACF without using a reducing gas, it showed the temperature and the oxygen concentration of the flue gas are the important factors for the NO conversion in which the conversion increased with oxygen concentration and decreased with the temperature increase and might be the alternative option for the selective catalytic reduction process.

  • PDF

Preparation of High-Temperature catalytic Support from Gibbsite II. Properties of Amophous Alumina as Precursor of Catalyst Support (깁사이트를 원료로 한 고온촉매용 담체의 제조 II, 비정질 알루미나의 담체 전구체로서의 특성)

  • 김성연;김연식
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.92-100
    • /
    • 1996
  • Amorphous alumina(AA) the precursor of ${\gamma}$-alumina for catalyst support was made in the newly designed ball filled heating column. Some properties of AA as precursor were investigated. In observation of microstruc-ture and pore structure of AA and its derivatives scanning electronic microscope(SEM) and transmission electronic microscope(TEM) were used. It was found that the width of one particle in AA was 45~60$\AA$ and the average distance among the particles ranged 9~12 $\AA$ which suggested a micropore structure. When AA was reacted with water the shape of the surface was found to be altered and acicular bioehmite was formed inside AA which contributed inproved formability. Pore distribution was evaluated for the three samples of AA ground and granulated lump and La2O3 coated alumina. Acid sites were quantitatively determined by ammonia TPD method and the effect of impurity of Na on acid sites was discussed. Water adsorption capacity was evaluated in terms of a desiccant.

  • PDF

Synthesis and characterization of MCM-41 type aluminosilicates (MCM-41형태의 알루미노실리케이트의 합성특성)

  • Lee, Sung-Hee;Lee, Dong-Kyu;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1231-1234
    • /
    • 2003
  • A sample procedure has been described to room temperature synthesis, mesoporous aluminosilicate materials with strong surface acidity by using a cationic surfactnat cetyltrimethylammonium bromide(CTABr) as the template agent. All samples were charecterized by X-ray diffraction(XRD) and nitrogen adsorption. The crystallinity and surface area of MCM-41 type aluminosilicats decrease with decreasing of Si/Al ratio. The influence of the aluminum contents of MCM-41 on the coordination of Al and on the acidity is studied by $^{27}Al$ MAS NMR and temperature programmed desorption of ammonia(TPD). It was shown that the incorporation of Al atoms into the framework causes increasing of acid site surface. And then Al atoms in the framework were incorporated tetrahedrally in structure, which gave a rise to cationic sites in the framework.

  • PDF

Synthesis, Characterization and Ammonia Decomposition Reaction Activity of Vanadium Oxynitride Obtained from the Reduction/Nitridation of Vanadium Oxide (바나디움 산화물의 환원 및 질화반응으로부터 얻어진 바나디움 산화질화물의 제조, 특성분석 및 암모니아 분해반응에서의 촉매 활성)

  • Yun, Kyung Hee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.620-629
    • /
    • 2022
  • By varying various experimental conditions such as heating rate, molar hourly space velocity (MHSV), and nitridation reaction temperature, vanadium oxynitride was prepared through temperature programmed reduction/nitridation reaction (TPRN) of vanadium pentoxide and ammonia, and characterization were performed. In order to investigate the physico-chemical properties of the prepared catalyst, N2 adsorption-desorption analysis, X-ray diffraction analysis (XRD), hydrogen temperature programmed reduction (H2-TPR), temperature programmed oxidation (TPO), ammonia temperature programmed desorption (NH3-TPD), transmission electron microscopy (TEM) was performed. Transformation of V2O5 with 5 m2 g-1 low specific surface area by reduction at 340 ℃ to V2O3 showed a high specific surface area value of 115 m2 g-1 by micropore formation. As the nitridation temperature increased beyond that, the specific surface area continued to decrease due to sintering. The nitridation reaction variable that had the greatest influence on the specific surface area was the reaction temperature, and the x + y value of VNxOy of a single phase approached from 1.5 to 1.0 as the nitridation reaction temperature increased. At a high reaction temperature of 680 ℃, the cubic lattice constant a was VN. close to the value. At 680 ℃, the highest nitridation temperature among the experimental conditions, the ammonia conversion rate was 93%, and no deactivation was observed.

Utilization of Charcoal as an Environmentally Friendly Building Materials (I) - Characterization of Building Materials Prepared with Charcoal - (목탄을 이용한 친환경 건축자재 이용기술(I) - 목탄으로 제조된 건축자재의 특성 평가 -)

  • Ahn, Byoung-Jun;Jo, Tae-Su;Lee, Sung-Suk;Paik, Ki-Hyon;Kim, Sun-Ik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-545
    • /
    • 2009
  • The objective of this study was to investigate potential usage of environmentally friendly building materials, liquid mortar and dry cement mortar mixed with charcoal, based on the test of their physical and chemical properties. From the test results of physical and chemical properties of the liquid mortar mixed with charcoal, liquid mortar containing over 20% of charcoal, the consistency viscosity and the non-volatile content met a standard requirement. Drying time was delayed with increase in charcoal contents in the liquid mortar, however they were fully cured within 60 minutes in all treated levels. Other properties were acceptable at standard requirement. From the results, it was found that the proper charcoal addition level to the liquid mortar was 25%. In the results on dry cement, it was found that samples containing 5% of charcoal showed the maximum compressive strength, whereas samples containing over 20% of charcoal did not reach the minimum requirement of KS standard. Water retention ability constantly increased as the charcoal ratio increased. The conventional dry cement mortar adsorbed 59.5% of it, in the test of adsorption rate on ammonia gas, whereas cement mortar containing 10% of charcoal showed 71.6% of ammonia gas adsorption.

The Potentiometric Titration Curves on Ammonia Absorption of Carboxylic Ion Exchanger (카르복실 이온교환수지의 암모니아 흡착에 대한 전위차 적정곡선)

  • Kim, T.I.;Son, W.K.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.969-973
    • /
    • 1999
  • In this work, we studied the degree of hydrolysis of ion exchanger in $NH_4OH$ solution and sorption characteristics of $NH_3$ by potentiometric titration curves with using carboxylic acid ion exchanger Fiban K-4. We knew that the theoretical pH values agreed with the experimental pH values on the $NH_4OH$ concentrations in various concentrations of supporting electrolyte $(NH_4)_2SO_4$. The sorption values of $NH_3$ using the ion exchanger can be calculated from equivalent sorption curves for various pH. Also, the degree of hydrolysis increased with decreasing concentration of supporting electrolyte and pH. In order to obtain the mono ion form below 0.01 M as the decreasing concentration of supporting electrolyte, the pH values should be increased. From these results, therefore, the concentrations of supporting electrolyte and pH values were determined.

  • PDF