• Title/Summary/Keyword: adsorbed film

Search Result 119, Processing Time 0.023 seconds

Fabrication and Electrical Characteristics of Ferredoxin Self-Assembled Layer for Biomolecular Electronic Device Application

  • NAM YUN SUK;CHOI JEONG-WOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.15-19
    • /
    • 2006
  • A ferredoxin adsorbed hetero self-assembled layer was fabricated on chemically modified Au substrate, 4-Aminothiophenol (4-ATP) was deposited onto Au substrate and then N-succinimidyl-3-[2-pyridyldithio] propionate (SPDP) was adsorbed on the 4-ATP layer, since SPDP was used as a bridging molecule for ferredoxin adsorption, Ferredoxin/SPDP/4-ATP structured hetero layer was constructed because of strong chemical binding of ferredoxin, SPDP, and 4-ATP, The surface of the ferredoxin-adsorbed SPDP/4-ATP layer was observed by scanning tunneling microscopy, The hetero film formation was verified by surface plasmon resonance measurement. The current flow and rectifying property based on the scanning tunneling spectroscopy I-V characteristics was achieved in the proposed hetero layer. Thus, the hetero layer structure of ferredoxin functioned as a molecular diode with rectifying property, The proposed molecular diode can be usefully applied for the development of molecular scale electronic devices.

Characteristics of Outgas from Heated Barrier Rib for POP (PDP용 격벽재의 승온 탈가스 특성)

  • 김선호;주정훈;이석영;이강욱;오상진
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.185-190
    • /
    • 2004
  • Plasma Display Panel is a display device emitting fluorescent light from gas discharge between a front and a rear panel sealed together. Front and rear panel have multitude of film layers and barrier ribs in the rear panel has the largest area so releasing various gases and affecting light emitting characteristics and lifetime. The remaining gases in a barrier rib were studied by thermal desorption analysis up to $400^{\circ}C$ and main gases were $H_2$ $H_2$O, CO. During sustaining at $300^{\circ}C$, the outgassing rates from other gases were decreased but$ H_2$ kept constantly increasing until 1 hour, which can be originated from the dissociation of organics remained in the inside of barrier rib material. In $H_2$O, two distinct peaks were observed: desorption from physically adsorbed one at $l00^{\circ}C$ and from chemically adsorbed one $400^{\circ}C$. The result can be utilized in interpretation of electronic and optical characteristics and evacuation process control of PDP

In-situ spectroscopic studies of SOFC cathode materials

  • Ju, Jong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF

Electrical and Optical properties of TiO2-doped ZnO Films prepared on PEN by RF-magnetron Sputtering Method (고주파 마그네트론 스퍼터링에 의해 성막된 TiO2가 도핑된 ZnO 박막의 전기적 및 광학적 특성)

  • Kim, Hwa-Min;Sohn, Sun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.837-843
    • /
    • 2009
  • $TiO_2$(2 wt.%)-doped ZnO(TZO) films with thickness from 100 nm to 500 nm were prepared on polyethylene naphthalate(PEN) substrate under various rf-power range from 40 W to 80 W. Their electrical and optical properties were investigated as a function of rf-power. We think that these properties were closely related with the crystallization and the film density of TZO films. It was also presumed that the vaporization of the water vapor and other adsorbed particles such as an organic solvents can affect the electrical properties of the conventional transparent conductive oxide(TCO) films. On the other hand, since the TZO film deposited on glass substrate at room temperature with rf-power of 80 W shows a very low resistivity of $7.5\times10^{-4}\;\Omega{\cdot}cm$ and a very excellent transmittance over an average 85% in the visible range, that is comparable to that of ITO films. Therefore, we expect that the TZO films can be used as transparent electrode for optoelectronic devices such as touch-panels, flat-panel displays, and thin-film solar cells.

Fabrication of Protein A-Viologen Hetero LB Film for Antibody Immobilization

  • Lee, Heon-Ju;Choe, Jeong-U;Lee, U-Chang;O, Byeong-Geun;Lee, Won-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.859-862
    • /
    • 2001
  • For the development of preferable immunosensor and protein chip, the viologen Langmuir-Blodgett (LB) multilayer was fabricated on the surface, and then protein A was adsorbed on the proposed viologen LB film by electrostatic attractive force. The Immunoglobulin G (IgG) labeled with fluorescence marker was self-assembled on the fabricated protein A film. The topographies of the deposited films were investigated by using atomic force microscope (AFM). The immobilization of IgG was verified by fluorescence spectrum. Such structures can be used as sublayers for various kinds of IgG immobilization toward immunosensors and protein chip.

  • PDF

Local Photoswitching Effects of Cytochrome c/Viologen/GFP Hetero-Thin Film

  • Yu, Chang-Jun;Choe, Jeong-U;Park, Se-Jeong;Nam, Yun-Seok;O, Byeong-Geun;Lee, Won-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.823-826
    • /
    • 2001
  • In the initial process of photosynthesis, a biological electron transfer system, photoelectric conversion occurs and then long-range electron transfer takes place very efficiently in one direction through the biomolecules. The metal/insulator/metal structured device consisting of GFP, viologen, cytochrome c hetero-thin film was presented based on the biomimesis. GFP, viologen, and cytochrome c was used as an electron sensitizer, a mediator, and an electron acceptor. Cytochrome c molecules and viologen molecules were deposited by Langmuir-Blodgett (LB) technique, and GFP molecules were adsorbed by self-assembly method (SAM). Surface morphology of hetero-thin film was analyzed by scanning tunneling microscopy (STM). Local photoswitching effects of a proposed photodiode were verified by current-voltage measurements using hybrid STM/I-V measurement system.

  • PDF

Characterisation of $TiO_2$ film synthesized using titaniumtetrachlo precusor ($TiCl_3$를 이용해서 합성된 $TiO_2$ 박막의 특성)

  • 김강혁;이창근;이규환;김인수
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.111-111
    • /
    • 2003
  • The peroxo titanic acid solution was successfully prepared using titanium trichloride as a precursor. The basic properties of the TiO2 film prepared by the solution were investigated in view of phase change, bandgap energy, crystalline size etc. The film displayed amorphous TiO$_2$ at room temperature, anatase above 281$^{\circ}C$ and a mixture of anatase and rutile at 99$0^{\circ}C$, The crystalline size increases with annealing temperatures, while the bandgap energies decrease due to the quantum size effect and the formation of rutile phase which has low bandgap energy. As a result of TG-DTA, it was found that annealing treatment at 99$0^{\circ}C$ for 2h formed a mixtures of anatase and rutile through three steps: (1) the removal of physically adsorbed water (2) the decomposition of peroxo group (3) amorphous-anatase or anatase-rutile phase transformation.

  • PDF

${\gamma}-Fe_2O_3$/Pd$ Thick Film Gas Sensors (${\gamma}-Fe_2O_3$/Pd$ 후막형 가스 감지소자)

  • 최동한;이덕동
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1393-1401
    • /
    • 1990
  • The physical properties of \ulcorner-Fe2O3 raw materials were investigated. \ulcorner-Fe2O3/Pd thick film gas sensors were fabricated with screen-printing method and their electrical and sensitivity characteristics were analyzed. The irreversible phase transition from \ulcorner-Fe2O3 to \ulcorner-Fe2O3 occured at 500\ulcorner. At this time, the cation of tetrahedral sites moved into the octahedral sites. \ulcorner-Fe2O3 raw materials contained only trivalent and no divalent iron. Thecontents of divalent iron (Fe+\ulcorner were increased as detecting gases were adsorbed. The addition of Pd (1w/o) to \ulcorner-Fe2O3 enhanced the sensitivity to gases. The sentivity of \ulcorner-Fe2O3/Pd(1w/o) thick film to 5000ppm C4H10 was 97% at the operating temperature of 300\ulcorner.

  • PDF

Current-voltage Characteristics of Water-adsorbed Imogolite Film

  • Park, Jae-Hong;Lee, Jung-Woo;Chang, Sun-Young;Park, Tae-Hee;Han, Bong-Woo;Han, Jin-Wook;Yi, Whi-Kun
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1048-1050
    • /
    • 2008
  • Electric current flow was observed through imogolite film when imogolite ($(HO)_3Al_2O_3SiOH$) was exposed to water molecules and connected to external electrodes. Current flow was due to the bound water on the surface of imogolite. Current flow increased as the pH of the water decreased. The current-voltage (I-V) measurements from a field effective transistor (FET) using $H_2O$/imogolite film revealed that the current carrier in $H_2O$/ imogolite had p-type characteristics, i.e. the carrier was probably $H^+$. The possible mechanism for current transportation in imogolite/water was also suggested in this paper.

나노 세리아 슬러리에 첨가된 연마입자와 첨가제의 농도가 CMP 연마판 온도에 미치는 영향

  • 김성준;강현구;김민석;박재근
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.122-125
    • /
    • 2003
  • We investigated the effect of the abrasive and additive concentrations in Nano ceria slurry on the pad surface temperature under varying pressure through chemical mechanical polishing (CMP) test using blanket wafers. The pad surface temperature after CMP increased with the abrasive concentration and decreased with increase of the additive concentration in slurries for the constant down pressure. A possible mechanism is that the additive adsorbed on the film surface during polishing decreases the friction coefficient, hence the pad surface temperature gets lower with increase of the additive concentration. This difference of temperature was more remarkable for the higher concentration of abrasives. In addition, in-situ measurement of spindle motor was carried out during oxide and nitride polishing. The averaged motor current for oxide film was higher than that for nitride film, which means the higher friction coefficient.

  • PDF