• Title/Summary/Keyword: adsorbed film

Search Result 119, Processing Time 0.025 seconds

Low Temperature Encapsulation-Layer Fabrication of Organic-Inorganic Hybrid Thin Film by Atomic Layer Deposition-Molecular Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.274-274
    • /
    • 2013
  • We fabricate encapsulation-layer of OLED panel from organic-inorganic hybrid thin film by atomic layer deposition (ALD) molecular layer deposition (MLD) using Al2O3 as ALD process and Adipoyl Chloride (AC) and 1,4-Butanediamine as MLD process. Ellipsometry was employed to verify self-limiting reaction of MLD. Linear relationship between number of cycle and thickness was obtained. By such investigation, we found that desirable organic thin film fabrication is possible by MLD surface reaction in monolayer scale. Purging was carried out after dosing of each precursor to eliminate physically adsorbed precursor with surface. We also confirmed roughness of the organic thin film by atomic force microscopy (AFM). We deposit AC and 1,4-Butanediamine at $70^{\circ}C$ and investigated surface roughness as a function of increasing thickness of organic thin film. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates super-lattice film can be possibly use as encapsulation in flexible devices.

  • PDF

A Space Charge Model for Semiconductor Gas Sensors (반도체 가스감지소자를 위한 공간전하 모델)

  • 이성필;이덕동;손병기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1631-1636
    • /
    • 1989
  • A space charge model for semiconductor reduced gas sensors has been roposed and applied to gas sensing mechanism. SnO2-x and SnO2-x/Pt thin film were deposited by vacuum evaporating method. And Hall effect and gas sensitivity characteristics of these sensors were measured. From the space charge model and carrier concentration, the number of the adsorbed gas atom on the solid surface was calculated quantitatively. The gas sensing model was compared with CO gas sensitivities of the fabricated thin film gas sensors.

  • PDF

Precise Adsorption Measurement Technique by a Phase Modulated Ellipsometry (편광변조 타원해석법에 의한 정밀 흡착측정기술)

  • Choi, B.I.;Nham, H.S.;Park, N.S.;Youn, H.S.;Lim, Tong-Kun
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.531-538
    • /
    • 2004
  • Studies of adsorption isotherms with sharp step-wise layer condensation help us to better understanding of two dimensional layers. For this, an adsorption isotherm apparatus, using a phase modulated ellipsometric technique, has been constructed and an adsorption experiment has been performed. With subatomic scale resolution(∼0.3 $\AA$), the adsorption processes could be observed by ellipsometric signals. On measurement of multilayer adsorption of argon on highly oriented pyrolytic graphite(HOPG), thousands of adsorbed layers were observed at 34.04 K, which suggests that the adsorption is completely wet. On the contrary nine sharp layers of steps for adsorptions and desorptions were observed at 67.05 K. These isotherms obtained can provide a lot of information about thermodynamic states, bonding energies between adsobate and substrate, and structure transitions in the adsorbed film.

Adsorption and Thermostability of Antimicrobial compounds on Water-soluble Silica (수용성 Silica에 대한 항균성물질의 흡착 및 내열성)

  • 김현수;성림식;이인선
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.345-349
    • /
    • 2002
  • The adsorption of the antimicrobial compounds(AMCs) and their heat-resistance were investigated for the packaging film manufacture, wherein, the antimicrobial compounds were adsorbed on a silica component. The naturally source antimicrobial compounds were produced by methylotropic actinomycetes strains MO-16 and MO-17, extracted with ethylacetate. Antimicrobial compounds adsorbed on water-soluble silica had retained activity against Gram(+) and the Gram(-) bacteria after heat treatment at 150$\^{C}$ for 5min. The benzoic acid showed strong antimicrobial activity to fungi and was stable to heat treatment. The combination of antimicrobial compound plus benzoic acid was synergistic against test strains. Therefore, we estimated that the water-soluble silica is suitable for the packaging film manufacture as a adsorbent of the antimicrobial compounds.

Efficient Complex Surfactants from the Type of Fatty Acids as Corrosion Inhibitors for Mild Steel C1018 in CO2-Environments

  • Abbasov, Vagif M.;El-Lateef, Hany M. Abd;Aliyeva, Leylufer I.;Ismayilov, Ismayil T.;Qasimov, Elmar E.;Narmin, Mamedova M.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The efficiency of three complex surfactants based on sunflower oil and nitrogen containing compounds as corrosion inhibitors for mild steel in $CO_2$-saturated 1% NaCl solution, has been determined by weight loss and LPR corrosion rate measurements. These compounds inhibit corrosion even at very low concentrations. The inhibition process was attributed to the formation of an adsorbed film on the metal surface that protects the metal against corrosive media. The inhibition efficiency increases with increasing the concentration of the studied inhibitors. Maximum inhibition efficiency of the surfactants is observed at concentrations around its critical micellar concentration (CMC). Adsorption of complex surfactants on the mild steel surface is in agreement with the Langmuir adsorption isotherm model, and the calculated Gibbs free energy values confirm the chemical nature of the adsorption. Energy dispersive X-ray fluorescence microscopy (EDRF) observations of the electrode surface confirmed the existence of such an adsorbed film.

Gas Sensitization of Tin Oxide Film by Resistance

  • Chwa, Sang-Ok;Park, Hee-Chan;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 1998
  • Gas sensitizations of tin oxide film were investigated by measuring the change of film resistance in various gas atmospheres such as $N_2,\; O_2,\; H_2O$. The main test sample, polycrystalline $SnO_2$ film containing small Sb as a dopant was prepared by a sputtering technique and showed a long term stability in base resistance and thus, in gas sensitivity. The adsorption of oxygen on the film surface as a type of $(O_{ads})$ at the temperature of around $300^{\circ}C$ played important roles in sensor operating mechanism. The roles were ⅰ) the increase of base resistance in ambient air, which consequently lead to high sensitivity and ⅱ) the promotion of fast recovery. The reaction of hydrogen gas with the already adsorbed $(O_{ads})$ ions was considered as a decisive sensitization mechanism of tin oxide film. However, the dissociation of hydrogen molecules on film surface, by direct donation of electron to film also took a major part in the sensitization. The effect of humidity on gas sensitization was found to be negligible at the sensor operating temperature of around $300^{\circ}C$.

  • PDF

The composition control of ITO/PET by plasma emission monitor (PEM을 이용한 ITO/PET film의 조성 제어)

  • 한세진;김용환;김영환;이택동
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4A
    • /
    • pp.438-444
    • /
    • 1999
  • The characterization of the reactively sputtered ITO layer on the PET film has been studied. The PEM device has been used to determine the optimum stoichimetry through control of the amount of oxygen incorporated into the alloy target and the optimum operation conditions to produce films with the highest electrical conductivity and visible transparency. The PEP film was pre-treated under the plasma discharge condition to remove the adsorbed gases and to modify the surface morphology. The results revealed that by adjusting the flow rate of oxygen with the spectral intensity of indium target, the composition of plasma gas can be kept constant during the entire deposition period. The resistivity of ITO film obtained was fond to be about 37$\Omega\Box$, and the transmittance of visual range was about 86%.

  • PDF

The role of polymers in dispersion stability and film formation of silica/PVA suspension

  • Kim, Seon-Hyeong;Seong, Jun-Hui;An, Gyeong-Hyeon;Lee, Seung-Jong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.23.2-23.2
    • /
    • 2010
  • Researches on the drying of particle/polymer suspensions receive attentions in technical applications such as manufacturing display and batteries. In this study, the effect of polymers on drying behavior of silica/poly(vinyl alcohol) suspension was investigated in terms of suspension stability and stress development during drying. The effect of polymer adsorption was studied by changing pH. More strongly flocculated suspension with lower pH became more dispersed and close-packed film after drying. Evaluation of potential energy allows us to suggest that the adsorbed polymers which bridge the particles introduce steric repulsion and lead flocculated suspension to dispersed film. When the effect of adsorption kinetics was studied by changing the mixing time, the adsorption amount, characteristic stress and dried film density showed a similar behavior in the form of with a single characteristic time. It implies that the drying process can be determined by simple characteristic equation with a single time constant.

  • PDF

Effect of the Nano Ceria Slurry Characteristics on end Point Detection Technology for STI CMP (STI CMP용 가공종점 검출기술에서 나노 세리아 슬러리 특성이 미치는 영향)

  • 김성준;강현구;김민석;백운규;박재근
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.15-20
    • /
    • 2004
  • Through shallow trench isolation (STI) chemical mechanical polishing (CMP) tests, we investigated the dependence of pad surface temperature on the abrasive and additive concentrations in ceria slurry under varying pressure using blanket film wafers. The pad surface temperature after CMP increased with the abrasive concentration and decreased with the additive concentration in slurries for the constant down pressure. A possible mechanism is that the additive adsorbed on the film surfaces during polishing decreases the friction coefficient, hence the pad surface temperature gets lower with increasing the additive concentration. This difference in temperature was more remarkable for the higher concentration of abrasives. In addition, in-situ measurement of spindle motor was carried out during oxide and nitride polishing. The averaged motor current for oxide film was higher than that for nitride film, meaning the higher friction coefficient.

  • PDF