• Title/Summary/Keyword: adrenergic receptor

Search Result 246, Processing Time 0.022 seconds

The Analgesic Effect of Bee Venom Aqua-acupuncture and Its Mechanism in the Rat Model with adjuvant-induced Arthritis (봉독약침(蜂毒藥鍼)이 Adjuvant 유발(誘發) 관절염(關節炎)에 미치는 진통효과(鎭痛效果) 및 그 기전(機轉)에 관한 연구(硏究))

  • Seo, Dong-min;Park, Dong-suk;Kang, Sung-keel
    • Journal of Acupuncture Research
    • /
    • v.20 no.2
    • /
    • pp.85-97
    • /
    • 2003
  • Introduction : In this study, the analgesic effect and its mechanism of bee venom aqua-acupuncture on complete Freund's adjuvant-induced arthritis in rats was investigated. It has been reported from a neurochemical standpoint that bee venom exerts antinociceptive effects on inflammation and that the opioid system and adrenergic system play important roles in acupuncture analgesia. however, it is not known whether central opioid and ${\alpha}2$-adrenergic components of the intrinsic descending analgesic system are activated after bee venom aqua-acupuncture. Methods : Bee venom(1mg/kg) was subcutaneously aqua-acupunctured into Joksamni($ST_{36}$) of rats with complete Freund's adjuvant(CFA)- induced arthritis and was checked of increase in TFL. Opioid and ${\alpha}_2$-adrenergic neurotransmitter system were examined by naloxone as an opioid receptor antagonist, and yohimbine as ${\alpha}_2$-adrenoceptor antagonist prior to bee venom aqua-acupuncture. Results : The following results have been obtained. 1. The tail flick latency in the rat model with adjuvant-induced arthritis was significantly decreased in 2 weeks. 2. The tail flick latency in the rat model with adjuvant-induced arthritis was increased in bee venom aqua-acupuncture group compared to the normal saline aqua-acupuncture group. 3. Analgesic effect of bee venom was antagonized by yohimbine not by naloxone pretreatment in the rat model adjuvant-induced arthritis. Conclusions : Bee venom aqua-acupuncture has an analgesic effect on the rat model of adjuvant-induced of adjuvant-induced arthritis and has antinociception mediated by ${\alpha}_2$-adrenergic system.

  • PDF

Comparison of Vasodilator Effects of Platycodin D and $D_3$ in Rats

  • Lim, Dong-Yoon;Kim, Byeong-Cheol;Lee, Eun-Bang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.149-155
    • /
    • 2003
  • The aim of the present study was to examine the effects of platycodin D and $D_3$, which are active components derived from the roots of Platycodon grandiflorum A. DC., on the contractile force of the i3olated rat aorta and blood pressure of the anesthetized rat, and also to elucidate its mechanism of action. Both phenylephrine (an adrenergic ${\alpha}1$-receptor agonist) and high potassium (a membranedepolarizing agent) caused great contractile responses in the isolated aortic strips. Platycodin D at high concentration $(24{\mu}g/ml)$ inhibited contractile responses induced by phenylephrine $(10^{-5}\;M)$ and high potassium $(5.6{\times}10^{-2}\;M)$, while low concentrations of platycodin D $(4{\sim}8{\mu}g/ml$) did not affect those responses. However, platycodin $D_3\;(8{\sim}32{\mu}g/ml)$ did not alter the contractile responses evoked by phenylephrine and high $K^+$. Interestingly, the infusion of platycodin $D_3$ (1.0 mg/kg/30 min) significantly reduced the pressor responses induced by intravenous norepinephrine. However, platycodin $D_3$ (1.0 mg/kg/30 min) did not affect them. Taken together, these results show that intravenously administered platycodin D depresses norepinephrine-induced pressor responses in the anesthetized rat, at least partly through the blockade of adrenergic ${\alpha}1$-receptors. Platycodin D also caused vascular relaxation in the isolated aortic strips of the rat via the blockade of adrenergic ${\alpha}1$-receptors, in addition to an unknown direct mechanism. However, platycodin $D_3$ did not affect both norepinephrine-induced pressor responses and the isolated rat aortic contractile responses evoked by phenylephrine and high potassium. Based on these results, there seems to be much difference in the mode of action between platycodin D and platycodin $D_3$.

Different effects of prolonged β-adrenergic stimulation on heart and cerebral artery

  • Shin, Eunji;Ko, Kyung Soo;Rhee, Byoung Doo;Han, Jin;Kim, Nari
    • Integrative Medicine Research
    • /
    • v.3 no.4
    • /
    • pp.204-210
    • /
    • 2014
  • The aim of this review was to understand the effects of ${\beta}$-adrenergic stimulation on oxidative stress, structural remodeling, and functional alterations in the heart and cerebral artery. Diverse stimuli activate the sympathetic nervous system, leading to increased levels of catecholamines. Long-term overstimulation of the ${\beta}$-adrenergic receptor (${\beta}AR$) in response to catecholamines causes cardiovascular diseases, including cardiac hypertrophy, stroke, coronary artery disease, and heartfailure. Although catecholamines have identical sites of action in the heart and cerebral artery, the structural and functional modifications differentially activate intracellular signaling cascades. ${\beta}AR$-stimulation can increase oxidative stress in the heart and cerebral artery, but has also been shown to induce different cytoskeletal and functional modifications by modulating various components of the ${\beta}AR$ signal transduction pathways. Stimulation of ${\beta}AR$ leads to cardiac dysfunction due to an overload of intracellular $Ca^{2+}$ in cardiomyocytes. However, this stimulation induces vascular dysfunction through disruption of actin cytoskeleton in vascular smooth muscle cells. Many studies have shown that excessive concentrations of catecholamines during stressful conditions can produce coronary spasms or arrhythmias by inducing $Ca^{2+}$-handling abnormalities and impairing energy production in mitochondria, In this article, we highlight the different fates caused by excessive oxidative stress and disruptions in the cytoskeletal proteome network in the heart and the cerebral artery in responsed to prolonged ${\beta}AR$-stimulation.

Experimental Studies on Uterine Catecholamines (Catecholamines에 관(關)하여 -제5편(第五編) : 자궁(子宮) catecholamines에 관한 실험적(實驗的) 연구(硏究)-)

  • Lee, Woo-Choo
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.37-60
    • /
    • 1983
  • The uterus receives adrenergic terminals from the mesenteric ganglia and considerably large amount of catecholamines have been shown to be contained in this organ. On the other hand, the activities of epinephrine, norepinephrine or adrenergic nerve on uterine motility is so complicated that many controversial results have been reporter. Recently, a large number of reports concerning the changes of uterine catecholamines content have appeared, but little is known about the role of uterine catecholamines in their activities on uterine motility. The present experiments were undertaken to determine the significance of the intrinsic uterine catecholamines in the physiology of uterus. Female albino rabbits weighing approximately 2 kg were employed in this experiment. uterine strip3 were prepared and suspended in a constant temperature $bath(38^{\circ}C)$ containing 100 ml of Locke's solution aerated with 95% oxygen and 5% carbon dioxide. Spontaneous motility was recorded on a smoked drum with an isotonic lever. The catecholamines concentration of the uterus was determined according to the Procedure described of Shore and Olin (1958). Human uterus obtained from patients was also used to determine the catecholam ines content of myometrium. Followings are summarized results. 1) On the non-pregnant rabbit uterine strips, epinephrine and norepinephrine significantly elevated the tonus and stimulated the spontaneous motility. Pretreatment with dichloroisoproterenol(DCI), an adrenergic beta-receptor blocker, enhanced the stimulatory activity of epinephrine or norepinephrine. On the other hand, pretreatment with dibenamine, an adrenergic alpha-receptor blocker, rendered the uterine muscle to exhibit inhibition after the administration of epinephrine or norepinephrine. Following the treatment with both DCI and dibenamine, epinephrine or norepinephrine produced no appreciable effects on the spontaneous motility of the uterus. These results suggest there exist both alpha and beta-adrenergic receptors in the uterine muscle and the response to epinephrine of the former is predominant over that of latter in the non-pregnant uterus of rabbits. The total catecholamines concentration of the non-pregnant uterus was $351\;m{\mu}g/g$ and the fractional concentrations of epinephrine and norepinephrine were $125\;m{\mu}g/g(35.7%)$ and $226\;m{\mu}g/g$ respectively. It is interesting to note that the catecholamines content of uterus was characterized by a high fractional corcentration of epinephrine relative to norepinephrine. 2) On the pregnant rabbit uterine strips, the effects of epinephrine and norepinephrine varied according to the period of pregnancy. The response to epinephrine of adrenergic beta receptor of uterus increased during pregnancy, and the effect of catecholamine was inhibitory in the early pregnancy but became stimulatory as the pregnancy progressed. This stimulating action on the uterine motility was found to occur through the action of norepinephrine. The uterine catecholamines concentration was markedly reduced during pregnancy. The catecholamines concentration was started to decrease in the early pregnancy, reached the lowest level in the mid-pregnancy and then started to increaae again in the late pregnancy when the total catecholamines content became the highest level of all. This increase of catefholamines in late pregnancy was chiefly due to the increase of norepinephrine. These results suggest that the uterine motility may be related to the catecholamines content, especially norepinephrine content in the uterus. 3) Bilateral oophorectomy of rabbits results in a marked shrink of the uterus in size. The spontaneous motility of the uterine segment of these animals was very weak and irregular. Norepinephrine produced inhibitory effect, whereas epinephrine was stimulatory or inhibitory effect on the uterine segment. The total catecholamines tontent in whole uterus was markedly reduced. The injection of estrogen into the oophorectornized rabbit increased the weight of uterus to approximately three times of that of oophorectornized animal. The apontaneous motility and the response to epinephrine and norepinephrine of the uterine segment were greatly enhanced. Both epinephrine and norepinephrine produced a marked stimulatory effects of the uterine motility. The uterine content of catecholamines, particularly epinephrine, was markedly increased. The injection of progesterone into the oophorectornized rabbit increaeed the weight of uterus to approximately 2.5 times of that of eophorectornized animal. The spontaneous motility of the uterine segment was weak and irregular. Epinephrine produced stimulatory effect at high concentrations but norepinephrine always prcdnced inhibitory effect on the uterine segment. The uterine content of catecholamines, particularly of norepinephrine, was markedly reduced. These results suggested that ovarian hormones play an important role not only on the growth and spontaneous norepinephrine of uterus but also on the catecholamines content and responee to epinephrine and norepinephrine of the uterus. 4) The intraperitoneal injection of reserpine(3 mg/kg) into the non-pregnant, pregnant and oophorectornieed rabbits markedly decreased the uterine content of catecholamines, particularly of the norepinephrine. The stimulatory response to epinephrine and. norepinephrine of the uterine segment of these reserpinized ratbits was markedly reduced whereas the inhibitory response to these catecholamines was enhanced. This finding further support the close relationship between the uterine catecholamines content and uterine response to epineptrire and norepinephrine. 5) In the human uterus, the concentration of epinephrine was actrally greater than that of norepinephrine and it was significantly greater during the proliferative phase of the menstrtal cycle. In the human pregnant uterus, the concentrations of toth epinephrine and ncrefinephrine were markedly reduced and showed about 45 percent rednction after 6-8 weeks of ectopic Pregnancy. At full term ana during labor, the concentrations of epinephrine and norepinephrine at placental sites were less than those found in the non-pregnant group. Of interest was the finding that the norepinephrine concentration of uterus from toxemic patients was two and half times higher than that of lower uterine segment of the nontoxemic pregnant individuals. Also the epinephrine concentraticn was slightly increaeed.

  • PDF

Effects of the $\beta$3-Adrenergic Receptor Genotype on Hyperglycemic Risk Among Korean Women

  • Oh, Hyun-Hee;Kim, Kil-Soo;Park, Sun-Mi;Yang, Hyun-Sung;Yoosik Yoon
    • Nutritional Sciences
    • /
    • v.6 no.4
    • /
    • pp.239-245
    • /
    • 2003
  • The $\beta$3-adrenergic receptor ($\beta$3AR) plays a major role in thermogenesis and lipolysis in brown and visceral adipose tissue, and has been implicated in the pathogenesis of obesity and metabolic disorders. The purpose of this study was to estimate the effects of $\beta$3AR gene polymorphism on the risk of hyperglycemia in 980 Korean women who attended a weight loss program in a local clinic. Each subject s height, weight, BMI, WHR, obesity index and body composition were measured. The genotype of the $\beta$3AR gene in codon 64 was analyzed by the PCR RFLP method. Serum concentrations of fasting glucose, of total and HDL cholesterol, and of TG were determined. Genotype distributions were as follows : 67% WW type, 31% WR type, and 2% RR type. Among the many measured parameters, fasting glucose levels were significantly higher in the WR/RR type compared with the WW type (p=0.0ll). When the subjects were divided into two groups by a fasting blood glucose level higher or lower than 6.105mmol/L (110mg/dl), the frequency of hyperglycemia showed a significant difference in relation to $\beta$3AR genotype as measured by $\X^2$-analysis (p=0.014); the frequency of hyperglycemia was significantly higher (at 24.8%) in WR/RR type subjects, compared to 18.2% in WW type subjects. When all of the measured parameters were included in stepwise logistic regression analyses to find the risk factors for hyperglycemia, the odds ratios for hyperglycemia were 1.573 (p=0.0ll) for the WR/RR type of the $\beta$3AR gene, 1.053 (p=0.001) for TG, 1.044 (p=0.037) for BMI, and 1.026 for age (p=0.031). These data suggest that the WR/RR genotype of the $\beta$3AR has a very strong association with increased blood glucose level and might be a significant risk factor for hyperglycemia among Korean women.

Comparative Analysis of Obesity by $\beta$-II, III, Adrenergic Receptor Gene Polymorphism in Korean Young Females ($\beta$-II, III Adrenergic Receptor 유전자 다형성에 따른 20대 한국여성의 식이 섭취량, 비만도 및 체성분의 비교연구)

  • 홍정미;김중학;박윤신;최선미;윤유식;안홍석
    • Journal of Nutrition and Health
    • /
    • v.35 no.8
    • /
    • pp.870-879
    • /
    • 2002
  • The purpose of this study was to investigate the obesity and state of dietary intake of 216 young Korean females, and the influence of $\beta$-II, III Adrenergic receptor (AR) gene polymorphism upon obesity and dietary intake. The average weight, height and BMI of the subjects were 160 cm, 54 kg, and 20.9 kg/$m^2$, respectively. The average triceps skinfold thickness, waist circumference, hip circumference and WHR were 21.7mm, 73.1cm, 93.3cm and 0.78, respectively. The results of body composition measurement using bioimpedance method, average body fluid, body protein, mineral mass and body fat were 29.271, 7.22 kg, 6.79 kg and 19.16 kg, respectively. A dietary survey was conducted using 24-hour recall method. Average calorie intake was 1621 ㎉, which is 81% of Korean RDA. We detected 182 (84.3%) Gln27 (QQ) homozygotes and 34 (15.7%) Gln27Glu (QE) heterozygotes for $\beta$-II AR polymorphism. For $\beta$-III AR polymorphism, we detected 163 (75.5%) Trp64 (WW) and 53 (24.5%) Trp 64Arg (WR). The results of comparing of obesity by $\beta$-II AR gene polymorphism, obesity index and BMI of QE type were slightly higher than those of the QQ type. For $\beta$-III AR gene polymorphism, the mean BMI, obesity index, fat mass and percent body fat (%) of the WR type were significantly higher than those of the WW type (p < 0.05). These findings suggest that genetic variability in the human $\beta$-III AR is associated with obesity among young Korean females. We also evaluated the effect of the simultaneous presence of the $\beta$-II AR and $\beta$-III AR polymorphism on obesity. We found that the BMI and obesity index of the mutant type in both $\beta$-II AR and $\beta$-III AR were significantly higher than those of the type that has only one gene mutation or has no mutation (p < 0.05), indicating a synergistic effect of $\beta$-II AR and $\beta$-III AR polymorphism on obesity. No association was found between $\beta$-II Ad or $\beta$-III AR polymorphism and dietary intake.

$TNF{\alpha}$ Increases the Expression of ${\beta}2$ Adrenergic Receptors in Osteoblasts

  • Baek, Kyung-Hwa;Lee, Hye-Lim;Hwang, Hyo-Rin;Park, Hyun-Jung;Kwon, A-Rang;Qadir, Abdul S.;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.173-178
    • /
    • 2011
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional cytokine that is elevated in inflammatory diseases such as atherosclerosis, diabetes and rheumatoid arthritis. Recent evidence has suggested that ${\beta}2$ adrenergic receptor (${\beta}2AR$) activation in osteoblasts suppresses osteogenic activity. In the present study, we explored whether $TNF{\alpha}$ modulates ${\beta}AR$ expression in osteoblastic cells and whether this regulation is associated with the inhibition of osteoblast differentiation by $TNF{\alpha}$. In the experiments, we used C2C12 cells, MC3T3-E1 cells and primary cultured mouse bone marrow stromal cells. Among the three subtypes of ${\beta}AR$, ${\beta}2$ and ${\beta}3AR$ were found in our analysis to be upregulated by $TNF{\alpha}$. Moreover, isoproterenol-induced cAMP production was observed to be significantly enhanced in $TNF{\alpha}$-primed C2C12 cells, indicating that $TNF{\alpha}$ enhances ${\beta}2AR$ signaling in osteoblasts. $TNF{\alpha}$ was further found in C2C12 cells to suppress bone morphogenetic protein 2-induced alkaline phosphatase (ALP) activity and the expression of osteogenic marker genes including Runx2, ALP and osteocalcin. Propranolol, a ${\beta}2AR$ antagonist, attenuated this $TNF{\alpha}$ suppression of osteogenic differentiation. $TNF{\alpha}$ increased the expression of receptor activator of NF-${\kappa}B$ ligand (RANKL), an essential osteoclastogenic factor, in C2C12 cells which was again blocked by propranolol. In summary, our data show that $TNF{\alpha}$ increases ${\beta}2AR$ expression in osteoblasts and that a blockade of ${\beta}2AR$ attenuates the suppression of osteogenic differentiation and stimulation of RANKL expression by $TNF{\alpha}$. These findings imply that a crosstalk between $TNF{\alpha}$ and ${\beta}2AR$ signaling pathways might occur in osteoblasts to modulate their function.

Synthesis of Higenamine and its Cardiovascular Effects in Rabbit: Evidence for ${\beta}-Adrenoceptor$ agonist (Higenamine의 합성 및 가토의 심혈관계에 미치는 영향 : 베타-아드레날린성 효능 약물)

  • Chang, Ki-Churl;Lim, Jung-Kyoo;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.96-104
    • /
    • 1986
  • Higenamine, dl-1-( 4-hydroxybenzyl)-6, 7-dihydroxy-1 ,2, 3 ,4-tetrahydroisoquinoline has been synthesized and evaluated for hemodynamic actions using rabbits under pentobarbital anesthesia. Concentration-related fall of mean blood pressure was observed, where diastolic blood presure was significantly lowered at 10 ug/kg/min or above (p<.05), while the systolic blood pressure was slightly increased or unaffected, thereby, causing increment of pulse pressure. No significant change was occured in heart rate, however, carotid artery blood flow was significantly (p<.05) increased. These actions were inhibited with pretreatment of 0.3 mg/kg of propranolol, beta-adrenoceptor antagonist, 5 minutes before infusion of higenamine indicating that higenamine compete with propranolol for the so-called beta adrenergic receptor. As comparison, the same procedure was applied to isoproterenol as well, where typical antagonism of propranolol against isoproterenol was shown. From these findings the vasodilating and diastolic blood pressure lowing effects could be explained in terms of cardiac beta stimulating action, however, dopamine receptor activation could not be excluded because no significant changes observed in chronotropism.

  • PDF

Functional characterization of $P_{2X}/P_{2Y}$ receptor in isolated swine renal artery

  • Kim, Joo-heon;Jeon, Je-cheol;Lee, Sang-kil;Lee, Su-jin;Lee, Younggeon;Won, Jinyoung;Kang, Jae seon;Hong, Yonggeun
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.4
    • /
    • pp.371-378
    • /
    • 2007
  • To understand the role of $PM_{2X}/P_{2Y}$ receptor in cortex region of kidney and renal artery, molecular and functional analysis of $PM_{2X}/P_{2Y}$ receptor by pharmacophysiological skill in conventional swine tissues were performed. In functional analysis of $P_{2Y}$ receptor for vascular relaxation, 2-methylthio adenosine triphosphate, a strong agonist of $P_{2Y}$ receptor, induced relaxation of noradrenaline (NA)-precontracted renal artery in a dose-dependent manner. Strikingly, relaxative effect of ATP, 2-msATP, agonists of $P_{2Y}$ receptor, abolished by treatment of reactive blue 2, a putative $P_{2Y}$ receptor antagonist. In contrast, no significant differences of gene encoding $PM_{2X}/P_{2Y}$ and protein expression in immortalized suprachiasmatic nucleus from brain, primary isolated vascular smooth muscle cells from renal artery of pigs and HEK293 from human embryonic kidney under with/without adenosine triphosphate were observed. Taken together, the relationship between molecular and functional characteristic of $PM_{2X}/P_{2Y}$ receptors in conventional pig should be considered that they are another important factor which regulate the kidney function in swine. Based on this study, we propose the purinergic receptor as well as adrenergic and cholinergic receptors is an essential component of the renal homeostasis.