• Title/Summary/Keyword: adrenergic neurotransmitters

Search Result 20, Processing Time 0.027 seconds

Relaxative Effect of Transmural Nerve Stimulation via ${\beta}$-adrenergic Nerve on the Isolated Uterine Smooth Muscle Motility of Pigs (돼지 적출 자궁 평활근의 운동성에 있어서 transmural nerve stimulation에 대한 ${\beta}$-adrenergic 신경의 이완작용)

  • Kim, Joo-Heon;Jeon, Jae-Cheul;Rho, Gyu-Jin;Hong, Yong-Geun;Choe, Sang-Yong
    • Journal of Veterinary Clinics
    • /
    • v.23 no.4
    • /
    • pp.421-426
    • /
    • 2006
  • The effects of transmural nerve stimulation induced releasing neurotransmitters on the changes of swine uterine smooth muscle motility were examined by polygraph through isometric force transducer. The frequency dependent relaxation and rebound contraction were revealed on precontraction with histamine by transmural nerve stimulation. The rebound contraction by transmural nerve stimulation was inhibited by nonselective ${\alpha}$-adrenergic receptor antagonist, phentolamine, and the relaxation by transmural nerve stimulation was blocked by nonselective ${\beta}$-adrenergic receptor antagonist, propranolol. The relaxation induced by nonselective ${\beta}$-adrenergic receptor agonist, isoproterenol on precontraction with histamine were the dose dependent manner and this relaxation was blocked by nonselective ${\beta}$-adrenergic receptor antagonist, propranolol in isolated uterine smooth muscle of pig. These results suggest that endogenous neurotransmitters on smooth muscle relaxation was influenced by ${\beta}$-adrenergic receptor in swine.

Vasomotor Regulation of the Israeli Carp (Cyprinus carpio) Ventral Aorta by Cholinergic and Adrenergic Neurotransmitters (콜린성 및 아드레날린성 신경전달물질에 의한 이스라엘잉어 복대동맥의 혈관긴장도 조절기능)

  • Park, Kwan-Ha
    • Korean Journal of Ichthyology
    • /
    • v.12 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • Depending on the fish species the vascular tone is distinctively regulated by numerous vasoactive substances. In most fish species the regulatory role of autonomic neurotransmitters and other vasoactive substances are not well defined. This research was designed to delineate the regulatory role of various endogenous autonomic neurotransmitters known to be important in mammalian vascular systems on isolated Israeli carp ventral aorta. Acetylcholine(ACh) contracted the aorta regardless of the pre-existing level of vascular tone, and the contraction was almost completely abolished by a cholinergic-muscarinic antagonist atropine. Endogenous, multiple receptor ($\alpha$ and $\beta$)-acting adrenergic agonist epinephrine (Epi) relaxed the vessel in the presence and absence of the pre-existing tones. Another endogenous multiple receptoracting agonist norepinephrine (NE) weakly contracted the aorta in non-preconstrcted state, but the response was reversed to relaxation when preconstricted. Isoproterenol, ${\alpha}\;{\beta}$ adrenergic receptor agonist, was a potent vasodilator whereas an ${\alpha}_1$ agonist phenyephrine was a contractor. The ${\alpha}_2$ adrenergic receptor agonist clonidine has not any significant effect in altering the vascular tone. The vasorelaxing action of Epi, NE and isoproterenol was significantly attenuated by $\beta$ receptor antagonist propranolol. These results imply that ACh may primarily play a contractor role via muscarinic receptor activation while adrenergic agonists, Epi and NE, are relaxants through activation of $\beta$ adrenergic receptors in vivo.

  • PDF

Production of polyclonal anti-$\beta$-adrenergic receptor antibody and it′s effects on receptor ligand binding

  • Kim, Hee-Jin;Shin, Chan-Young;Noh, Min-Su;Ko, Kwang-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.86-86
    • /
    • 1995
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently by the use of specific anti-receptor antibodies. A 14-mer peptide (from Phe102 to Leu115 of ${\beta}$2-adrenergic receptor) was synthesized and this peptide was coupled to carrier protein Keyhole Limpet Hemocyanin(KLH) by glutaraldehyde method. A 0.5mg of KLH-coupled peptide was emulsified with equal volume of complete Freund's adjuvant and injected via popliteal lymph node to each of the three Newzealnd White rabbits. Booster injections were repeated at 4 weeks interval for three times with incomplete Freund's adjuvants. One week after the final injection, serum was prepared from ear artery. Nonspecific immunoglobulins were removed by passing the serum through KLH-Sepharose 6B affinity matrix and further by incubation with bovine lung aceton powder. The titer of the antibody for synthetic peptide which was determined by enzyme linked immunosorbent assay(ELISA) was about l/l,000. The antibody produced in this study revealed 67kDa protein band in the western blot of partially purified guinea pig lung ${\beta}$-adrenergic receptor preparation. The antibody inhibited ${\beta}$-adrenergic antaginist [3H] Dihydroalprenolol binding to soluble ${\beta}$-adrenergic receptor by 25% while control sera did not show any inhibitory effects, The result of this study suggests that the peptide sequence selected in this study may play some important roles in adrenergic receptor-ligand interaction.

  • PDF

Production rind Characterization of the Polyclonal Anti-peptide Antibody for $\beta$-adrenergic Receptor

  • Kim, Hee-Jin;Shin, Chan-Young;Sang Bong lee;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.2 no.4
    • /
    • pp.303-309
    • /
    • 1994
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently through the use of specific antibodies. Two kinds of antibodies could be produced, one is from synthetic peptides and the other from proteins such as purified receptor. Anti-peptide antibodies gave some advantages; epitope is evident and also receptor purification in quantity is not prerequisite. It can be also applied to the study of receptor structure-activity relationship. The purpose of the present study was 1) to produce and characterize a polyclonal antibody against a synthetic $\beta$2-adrenergic receptor peptide(Phe-Gly-Asn-Phe-Trp-Cys-Phe-Trp-Thr-Ser-Ile-Asp-Val-Leu) and 2) to determine the effects of this antibody on the $\beta$-adrenergic receptor ligand interaction. The peptide sequence contains an amino acid residue such as Asp-113 which was identified as one of important component for receptor-ligand interaction in site-directed mutagenesis studies. Production of antibody was performed by immunization of rabbits through popliteal lymph node with the peptide coupled with Keyhole Limpet Hemocyanin (KLH). The titer of antibody against this peptide was 1 : 1000. The anti-peptide antibody was able to detect a 67 kDa protein band in western blot corresponding to the molecular weight of the $\beta$-adrenergic receptor in partially purified receptor fraction derived from guinea pig lung. The antisera inhibited the specific binding of [$^3$H]dihydroalprenolol to $\beta$-adrenergic receptor in a concentration-dependent manner. The results from this study suggest that the peptide sequence selected in the present study is important for the receptor ligand interaction.

  • PDF

Actions of acetylcholine, norepinephrine, histamine and prostaglandin F2α on motility of pig oviductal isthmic smooth muscle (돼지 난관협부 평활근의 운동성에 대한 acetylcholine, norepinephrine, histamine 및 prostaglandin F2α의 작용)

  • Rho, Gyu-jin;Park, Sang-eun;Shim, Cheol-soo;Kim, Joo-heon;Choe, Sang-young
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.3
    • /
    • pp.493-500
    • /
    • 1994
  • The purpose of this study was to investigate the effects of neurotransmitters and the source of $Ca^{2+}$ in the effects of neurotransmitters on the motility of pig oviductal isthmic smooth muscle. The motility of the isolated smooth muscle was recorded by using physiological recording system. The results were summarized as follows; Acetylcholine, norepinephrine, histamine and prostaglandin $F_{2{\alpha}}(PGF_{2{\alpha}})$ caused the contraction and the contractile responses were increased in a dose-dependent manner from the concentration of $10^{-7}$ to $10^{-4}M$. The maximum contractility of acetylcholine, norepinephrine, histamine and $PGF_{2{\alpha}}$ was 65.99, 28.66, 83.99 and 47.33% of 100 mM K contraction, respectively. The contractile response induced by acetylcholine$(10^{-6}M)$ was completely blocked by the pretreatment with cholinergic receptor blocker, atropine$(10^{-6}M)$, the contractile response induced by norepinephrine$(10^{-5}M)$ was blocked by the pretreatment with ${\alpha}$-adrenergic receptor blocker, phentolamine$(10^{-6}M)$ but was not blocked and rather increased by the pretreatment with ${\beta}$-adrenergic receptor blocker. propranolol$(10^{-6}M)$, the contractile response induced by histamine$(10^{-6}M)$ was completely blocked by the pretreatment with $H_1$-histaminergic receptor blocker, pyrilamine$(10^{-6}M)$ but was increased by the pretreatment with $H_2$-histaminergic receptor blocker, cimetidine$(10^{-6}M)$. The contractile response induced by acetylcholine$(10^{-6}M)$, norepinephrine$(10^{-5}M)$ and histamine$(10^{-6}M)$ was weakly contracted response in $Ca^{2+}$-free medium, but the contractile response induced by $PGF_{2{\alpha}}(10^{-6}M)$ was disappeared. The contractile response induced by acetylcholine$(10^{-6}M)$, norepinephrine$(10^{-5}M)$ and histamine$(10^{-6}M)$ was powerfully depressed by the pretreatment with $Ca^{2+}$-channel blocker, verapamil$(10^{-5}M)$ but the contractile response induced by $PGF_{2{\alpha}}(10^{-6}M)$ was completely inhibited.

  • PDF

Roles of Serotonergic and Adrenergic Receptors in the Antinociception of Selective Cyclooxygenase-2 Inhibitor in the Rat Spinal Cord

  • Jeong, Hye-Jin;Lee, Seong-Heon;Cho, Soo-Young;Lee, Cha-Sup;Jeong, Cheol-Won;Yoon, Myung-Ha;Kim, Woong-Mo
    • The Korean Journal of Pain
    • /
    • v.24 no.4
    • /
    • pp.179-184
    • /
    • 2011
  • Background: The analgesic mechanisms of cyclooxygenase (COX)-2 inhibitors have been explained mainly on the basis of the inhibition of prostaglandin biosynthesis. However, several lines of evidence suggest that their analgesic effects are mediated through serotonergic or adrenergic transmissions. We investigated the roles of these neurotransmitters in the antinociception of a selective COX-2 inhibitor at the spinal level. Methods: DUP-697, a selective COX-2 inhibitor, was delivered through an intrathecal catheter to male Sprague-Dawley rats to examine its effect on the flinching responses evoked by formalin injection into the hindpaw. Subsequently, the effects of intrathecal pretreatment with dihydroergocristine, prazosin, and yohimbine, which are serotonergic, ${\alpha}1$ adrenergic and ${\alpha}2$ adrenergic receptor antagonists, respectively, on the analgesia induced by DUP-697 were assessed. Results: Intrathecal DUP-697 reduced the flinching response evoked by formalin injection during phase 1 and 2. But, intrathecal dihydroergocristine, prazosin, and yohimbine had little effect on the antinociception of intrathecal DUP-697 during both phases of the formalin test. Conclusions: Intrathecal DUP-697, a selective COX-2 inhibitor, effectively relieved inflammatory pain in rats. Either the serotonergic or adrenergic transmissions might not be involved in the analgesic activity of COX-2 inhibitors at the spinal level.

A Monoclonal Anti-peptide Antibody against $\beta$2-adrenergic Receptor Which Specifically Binds [$^{3}H$] dihydroalprenolol

  • Shin, Chan Young;Noh, Min Su;Lee, Sang Derk;Lee, Sang Bong;Ko, Kwang Ho
    • Biomolecules & Therapeutics
    • /
    • v.3 no.4
    • /
    • pp.266-272
    • /
    • 1995
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently through the use of specific antibodies. To generate and characterize a moloclonal antibody against $\beta$-adrenergic receptor, a synthetic $\beta$2-adrenergic receptor peptide (Phe-Gly-Asn-Phe-Trp-Cys-Phe-Trp-Thr-Ser-lle-Asp-Val-Leu) which may comprise part of $\beta$-adrenergic receptor ligand binding pocket was coupled to Keyhole Limpet Hemocyanin (KLH) and used as an immunogen. Male BALB/C mice were immunized with this antigen and the immunized spleen was fused with myeloma SP2/0-Ag14 cells to produce monoclonal antibodies. Two clones were obtained but one of monoclonal antibodies, mAb5G09, was used throughout in this study because the other clone, mAb5All showed weak immunoreactivity against KLH as well. The mouse monoclonal antibody mAb5G09 produced in this study showed immunoreactivity to peptide-KLH conjugates and also to human A43l cells and guinea pig lung $\beta$2-adrenergic receptor as revealed by ELISA and western blot. In the course of determination of the effects of mAb5G09 on $\beta$-receptor ligand binding, it was observed that mAb5G09 specifically bound $\beta$-adrenergic radioligand [$^3$H]dihydroalprenolol (DHA) with a dissociation constant (Kd) of 60 nM. The [$^3$H]DHA binding activity of mAb5G09 had characteristics of immunoglobulins and the binding activity was not observed in the control anti-KLH monoclonal antibody. The monoclonal antibody, mAb5G09 produced in this study may provide useful models for the study of the structure of receptor binding sites.

  • PDF

Structural Features of β2 Adrenergic Receptor: Crystal Structures and Beyond

  • Bang, Injin;Choi, Hee-Jung
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.105-111
    • /
    • 2015
  • The beta2-adrenergic receptor (${\beta}2AR$) belongs to the G protein coupled receptor (GPCR) family, which is the largest family of cell surface receptors in humans. Extra attention has been focused on the human GPCRs because they have been studied as important protein targets for pharmaceutical drug development. In fact, approximately 40% of marketed drugs directly work on GPCRs. GPCRs respond to various extracellular stimuli, such as sensory signals, neurotransmitters, chemokines, and hormones, to induce structural changes at the cytoplasmic surface, activating downstream signaling pathways, primarily through interactions with heterotrimeric G proteins or through G-protein independent pathways, such as arrestin. Most GPCRs, except for rhodhopsin, which contains covalently linked 11 cis-retinal, bind to diffusible ligands, having various conformational states between inactive and active structures. The first human GPCR structure was determined using an inverse agonist bound ${\beta}2AR$ in 2007 and since then, more than 20 distinct GPCR structures have been solved. However, most GPCR structures were solved as inactive forms, and an agonist bound fully active structure is still hard to obtain. In a structural point of view, ${\beta}2AR$ is relatively well studied since its fully active structure as a complex with G protein as well as several inactive structures are available. The structural comparison of inactive and active states gives an important clue in understanding the activation mechanism of ${\beta}2AR$. In this review, structural features of inactive and active states of ${\beta}2AR$, the interaction of ${\beta}2AR$ with heterotrimeric G protein, and the comparison with ${\beta}1AR$ will be discussed.

Effects of Electrolytes and Drugs on the Inhibitory Junction Potentials Recorded from the Antrum of Guinea-pig Stomach (기니피그 유문동에서 기록되는 억제성 접합부 전압에 미치는 전해질과 약물의 효과)

  • Goo, Yong-Sook;Suh, Suk-Hyo;Lee, Suk-Ho;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 1990
  • The effects of electrolytes, adenosine, ATP, 5-hydroxytryptamine (5-HT, serotonin) and ketanserin on the inhibitory junction potentials (IJPs) were investigated to clarify the interactions of these drugs with the neurotransmitters released from non-adrenergic, non-cholinergic nerves in the antrum of guinea-pig stomach. Electrical responses of antral circular muscle cells were recorded intracellularly using glass capillary microelectrode filled with 3 M KCI. All experiments were performed in Tris-buffered Tyrode soluition which was aerated with 100% $O_{2}$ and kept at $35^{\circ}C$. The results obtained were as follows: 1) Inhibitory junction potential (IJP) was recorded in antral strip, while excitatory junction potential (EJP) was recorded in fundic strip. 2) IJP recorded in antral strip was not influenced by atropine $(10^{-6}\;M)$ and guanethidine $(5{\times}10^{-6})$. 3) The amplitude of IJP increased in high $Ca^{2+}$ solution, while that of IJP decreased in high $Mg^{2+}$ solution or by $Ca^{2+}$ antagonist (verapamil). Apamin, $Ca^{2+}$-activated $K^{+}$ channel blocker blocked IJP completely. 4) ATP and adenosine decreased the amplitude of IJP. 5) 5-HT decreased the amplitude of IJP with no change of the amplitude of slow waves, while ketanserin (5-HT type 2 blocker) decreased the amplitude of slow waves markedly with no change in that of IJP. From the above results, the following conclusions could be made. 1) IJP recorded in antral strip is resulted from neurotransmitters released from non-adrenergic, non-cholinergic nerves. 2) An increase in the concentration of external $Ca^{2+}$ enhances the release of neurotransmitters from non-adrenergic, non-cholinergic nerves which activate the $Ca^{2+}$-dependent $K^{+}$ channel.

  • PDF

Distribution of Autonomic Neurotransmitters in the Human Vocal Fold (인간의 성대조직에서 자율신경 전달물질의 분포)

  • 조정일;박정선;김영모
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.10 no.1
    • /
    • pp.37-42
    • /
    • 1999
  • The vocal fold has three major function-phonation, respiration and protection, and is richly innervated. The vocal 1314 its autonomic innervation-adrenergic and cholinergic from superior cervical ganglion and the vagus nerve, respectively. The action of both system account for vasoregulation and glandular activity. In e vocal fold several kin of neuropeptides, including SP, CGRP, VIP, TH, NPY, ENK have been reported at the animal including cat or dog. But information regarding the distribution of autonomic nerve fibers containing neuropeptides in the human vocal fold is lacking. Two neuropeptides are of special interest : 1) vasoactive intestinal polypeptide(VIP)that is known to be contained in the parasympathetic(cholinergic) neuron. 2) tyrosine hydroxylase(TH)is located in the cytoplasm of noradrenergic neuron and is the rate-limiting enzyme in noradrenaline synthesis. To understand specific autonomic function of vocal fold we did immunohistochemical examination of VIP and TH in the human vocal fold.

  • PDF