• Title/Summary/Keyword: adrenergic beta-antagonist

Search Result 25, Processing Time 0.026 seconds

Relaxative Effect of Transmural Nerve Stimulation via ${\beta}$-adrenergic Nerve on the Isolated Uterine Smooth Muscle Motility of Pigs (돼지 적출 자궁 평활근의 운동성에 있어서 transmural nerve stimulation에 대한 ${\beta}$-adrenergic 신경의 이완작용)

  • Kim, Joo-Heon;Jeon, Jae-Cheul;Rho, Gyu-Jin;Hong, Yong-Geun;Choe, Sang-Yong
    • Journal of Veterinary Clinics
    • /
    • v.23 no.4
    • /
    • pp.421-426
    • /
    • 2006
  • The effects of transmural nerve stimulation induced releasing neurotransmitters on the changes of swine uterine smooth muscle motility were examined by polygraph through isometric force transducer. The frequency dependent relaxation and rebound contraction were revealed on precontraction with histamine by transmural nerve stimulation. The rebound contraction by transmural nerve stimulation was inhibited by nonselective ${\alpha}$-adrenergic receptor antagonist, phentolamine, and the relaxation by transmural nerve stimulation was blocked by nonselective ${\beta}$-adrenergic receptor antagonist, propranolol. The relaxation induced by nonselective ${\beta}$-adrenergic receptor agonist, isoproterenol on precontraction with histamine were the dose dependent manner and this relaxation was blocked by nonselective ${\beta}$-adrenergic receptor antagonist, propranolol in isolated uterine smooth muscle of pig. These results suggest that endogenous neurotransmitters on smooth muscle relaxation was influenced by ${\beta}$-adrenergic receptor in swine.

Xylazine-induced depression and its antagonism by α-adrenergic blocking agents (Xylazine의 진정효과와 α-adrenergic 수용체 봉쇄약물의 길항효과)

  • Kim, Chung-hui;Hah, Dae-sik;Kim, Yang-mi;Kim, Jong-shu
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 1993
  • The central nervous system depressant effect of xylazine and xylazine-ketamine was studied in chicken and mice. Intraperitoneal injection of xylazine(1~30 mg/kg) and xylazine(1~30 mg/kg)-ketamine(100 mg/kg) induced a loss of the righting reflex in chicken and mice, respectively. These effects of xylazine were dose-dependent. The results obtained were as follows; 1. The effect of xylazine-induced depression was antagonized by adrenergic antagonists having ${\alpha}_2$-blocking activity(yohimbine, tolazoline, piperoxan and phentolamine). 2. Yohimbine was most effective in the reduction of the CNS depression by xylazine. 3. Phenoxybenzamine and prazosin did not reduced CNS depression by xylazine in both species. 4. Labetalol (${\alpha}_1$, ${\beta}_1$-adrenergic antagonist) and propranolol(${\beta}$-adrenergic blocking agent) were not effective in reducing xylazine induced depression. 5. Cholinergic blocking agents (atropine and mecamylamine), a dopaminergic antagonist (Haloperidol), a histamine $H_1$-antagonist(chlorpheniramine), a histamine $H_2$-antagonist(cimetidine), a serotonergic-histamine $H_1$ antagonist(cyproheptadine) were not effective in reducing xylazine-induced depression. 6. Xylazine-induced depression is mediated by ${\alpha}_2$-adrenergic receptors and appears not to be involved in cholinergic, dopaminergic, serotonergic or histaminergic pathways.

  • PDF

Effects of calcium and calcium antagonist nifedipine on the glycogenolysis induced by the stimulation of alpha-and beta-adrenergic receptors in rat hepatocytes (흰쥐 hepatocyte에서 알파 및 베타 아드레날린 수용체의 자극에 의한 글리코겐분해에 있어서 칼슘과 니페디핀의 작용)

  • Lee, Young-Hee;Kim, Joon-Kyum;Kim, Mie-Young
    • YAKHAK HOEJI
    • /
    • v.32 no.6
    • /
    • pp.428-434
    • /
    • 1988
  • The effects of calcium and calcium antagonist, nifedipine on the adrenergic receptor-stimulated glycogenolysis were investigated in isolated rat hepatocytes. The hepatic glycogenolysis induced by alpha-adrenergic receptor stimulation depended on calcium ions, and beta-adrenergic activation was unrelated to calcium ions. Nifedipine decreased the alpha-adrenergic agonist-induced glucose release significantly and the decrease was depended on calcium ions. The glucose release induced by beta-adrenergic agonist was not inhibited by nifedipine.

  • PDF

Involvement of Adenosine in Cardioprotective Effect of Catecholamine Preconditioning in Ischemia-Reperfused Heart of Rat

  • Kim, Young-Hoon;Kim, Chan-Hyung;Kim, Gi-Tae;Kim, In-Kyu;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.753-761
    • /
    • 1998
  • Preconditioning of a heart with small doses of catecholamines induces a tolerance against the subsequent lethal ischemia. The present study was performed to find a specific receptor pathway involved with the catecholamine preconditioning and to test if adenosine plays a role in this cardioprotective effect. Isolated rat hearts, pretreated with small doses of ${\alpha}-\;or\;{\beta}-adrenergic$ agonists/antagonists, were subjected to 20 minutes ischemia and 20 minutes reperfusion by Langendorff perfusion method. Cardiac mechanical functions, lactate dehydrogenase and adenosine release from the hearts were measured before and after the drug treatments and ischemia. In another series of experiments, adenosine $A_1\;or\;A_2$ receptor blockers were treated prior to administration of adrenergic agonists. Pretreatments of a ${\beta}-agonist,\;isoproterenol(10^{-9}{\sim}10^{-7}\;M)$ markedly improved the post-ischemic mechanical function and reduced the lactate dehydrogenase release. Similar cardioprotective effect was observed with an ?-agonist, phenylephrine pretreatment, but much higher $concentration(10^{-4}\;M)$ was needed to achieve the same degree of cardioprotection. The cardioprotective effects of isoproterenol and phenylephrine pretreatments were blocked by a ${\beta}_1-adrenergic$ receptor antagonist, atenolol, but not by an ${\alpha}_1-antagonist,$ prazosin. Adenosine release from the heart was increased by isoproterenol, and the increase was also blocked by atenolol, but not by prazosin. A selective $A_1-adenosine$ receptor antagonist, 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX) blocked the cardioprotection by isoproterenol pretreatment. These results suggest that catecholamine pretreatment protects rat myocardium against ischemia and reperfusion injury by mediation of ${\beta}_1-adrenergic$ receptor pathway, and that adenosine is involved in this cardioprotective effect.

  • PDF

Effects of Cardiovascularly Acting Neuroendocrine Agents on Heart Beatings of Pacific Oyster, Crassostrea gigas (순환기 기능 조절기능을 가진 신경내분비계 작용물질이 참굴의 심장 수축기능에 미치는 영향)

  • Park, Kwan-Ha
    • The Korean Journal of Malacology
    • /
    • v.25 no.1
    • /
    • pp.15-22
    • /
    • 2009
  • Because it is known that bivalve hearts contain various modulatory systems activated by neuroendocrine substances, it was examined whether different classes of endogenous and synthetic drugs of neuroendocrinological importance can influence cardiac functions of the Pacific oyster Crassostrea gigas. Cholinergically active agents acetylcholine and carbachol increased heart rates while diminishing cardiac contractility. Adrenergically active substances norepinephrine (NE) and epinephrine (Epi) also induced heart rate increase and contractility decrease. An $\alpha_1$-adrenergic receptor-selective agonist phenyephrine (PE) failed to modulate either parameter. The Epi-induced heart rate increase and contractile depression were both blocked significantly by non-selective $\beta_1/\beta_2$-adrenergic antagonist propranolol. A $\beta_1$-selective antagonist atenolol prevented Epi-induced heart rate decrease but not the contractile depression, suggesting possible $\beta_2$ receptors for Epi-induced contractile depression. The three autacoids examined exerted discrete responses: histamine increased heart rate and depressed contraction; $\gamma$-amino-butyric acid increased both parameters; serotonin failed to change either parameter. The 5 piscine anesthetic agents examined, MS-222, benzocaine, quinaldine, urethane, pantocaine and pentobarbital, all failed to influence the cardiac function of oysters. Collectively, activities of neuroendocrinologically acting agents in mammals showed unexpected and distinct activities from those in mammalian cardiovascular systems. These results obtained from substances of different physiological functions can serve as a basis for understanding neuroendocrine control of the heart function in Pacific oyster.

  • PDF

Effects of ${\alpha}_1-Adrenergic$ Receptor Stimulation on Intracellular $Na^+$ Activity and Twitch Force in Guinea-Pig Ventricular Muscles

  • Chae, Soo-Wan;Gong, Q.Y.;Wang, D.Y.;Lee, Chin-O.
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.203-216
    • /
    • 1995
  • The effects of ${\alpha}_1-adrenergic$ receptor stimulation on membrane potential, intracellular $Na^+$ activity, and twitch force were investigated in ventricular muscles from guinea-pig hearts. Action potentials, intracellular $Na^+$ activity, and twitch force of ventricular papillary muscles were measured simultaneously under various experimental conditions. Stimulation of the ${\alpha}_1-adrenergic$ receptor by phenylephrine produced variable changes in action potential duration, a slight hyperpolarization of the diastolic membrane potential, a decrease in intracellular $Na^+$ activity, and a biphasic inotropic response in which a transient negative inotropic response was followed by a sustained positive inotropic response. These changes were blocked by prazosin, an antagonist of the ${\alpha}_1-adrenergic$ receptor, but not by atenolol, an antagonist of the ${\beta}-adrenergic$ receptor. This indicates that the changes in membrane potential, intracellular $Na^+$ activity, and twitch force are mediated by stimulation of the ${\alpha}_1-adrenergic$ receptor, but not by stimulation of ${\beta}-adrenergic$ receptor. The decrease in intracellular $Na^+$ activity was not observed in quiescent muscles, depending on the rate of the action pontentials in beating muscles. The intracellular $Na^+$ activity decrease was substantially inhibited by tetrodotoxin. However, the decrease in intracellular $Na^+$ activity was not affected by an inhibition of the $Na^+-K^+$ pump. Therefore, the decrease in intracellular $Na^+$ activity mediated by the ${\alpha}_1-adrenergic$ receptor appears to be due to a reduction of $Na^+$ influx during the action potential, perhaps through tetrodotoxin sensitive $Na^+$ channels. Our study also revealed that the decrease in intracellular $Na^+$ activity might be related to the transient negative inotropic response. The intracellular $Na^+$ activity decrease could lower intracellular $Ca^{2+}$ through the $Na^+-Ca^{2+}$ exchanger and thereby produce a decline in twitch force.

  • PDF

Propranolol, a β-adrenergic antagonist, attenuates the decrease in trabecular bone mass in high calorie diet fed growing mice

  • Baek, Kyunghwa;Hwang, Hyo Rin;Park, Hyun-Jung;Kwon, Arang;Qadir, Abdul S.;Baek, Jeong-Hwa
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.506-511
    • /
    • 2014
  • We investigated the effects of high calorie and low calorie diets on skeletal integrity, and whether ${\beta}$-adrenergic blockade (BB) attenuates bone loss induced by dietary calorie alteration. Male 6-week-old C57BL/6 mice were assigned to either an ad-lib fed control diet (CON), a high calorie diet (HIGH), or a low calorie diet (LOW) group. In each diet group, mice were treated with either vehicle (VEH) or propranolol, a ${\beta}$-adrenergic antagonist. Over 12-weeks, ${\beta}$-blockade mitigated body weight and fat mass increases induced by the high calorie diet. Femoral trabecular bone mineral density and the expression levels of osteogenic marker genes in bone marrow cells were reduced in HIGHVEH and LOWVEH mice, and BB significantly attenuated this decline only in HIGH mice. In summary, the magnitude of bone loss induced by low calorie diet was greater than that caused by high calorie diet in growing mice, and ${\beta}$-blockade mitigated high calorie diet-induced bone loss.

Synthesis of [18F]-Labelled Nebivolol as a β1-Adrenergic Receptor Antagonist for PET Imaging Agent (베타1-아드레날린 수용체를 표적으로 하는 심근영상제로서 18F 표지된 nebivolol의 합성)

  • Kim, Taek-Soo;Park, Jeong Hoon;Lee, Jun Young;Yang, Seung Dae;Chang, Dong-Jo
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.181-187
    • /
    • 2016
  • Selective ${\beta}_1$-agonist and antagonists are used for the treatment of cardiac diseases including congestive heart failure, angina pectoris and arrhythmia. Selective ${\beta}_1$-antagonists including nebivolol have high binding affinity on ${\beta}_1$-adrenergic receptor, not ${\beta}_2$-receptor mainly expressed in smooth muscle. Nebivolol is one of most selective ${\beta}_1$-blockers in clinically used ${\beta}_1$-blockers including atenolol and bisoprolol. We tried to develop clinically useful cardiac PET tracers using a selective ${\beta}_1$-blocker. Nebivolol is $C_2$-symmetric and has two chromane moiety with a secondary amino alcohol and aromatic fluorine. We adopted the general synthetic strategy using epoxide ring opening reaction. Unlike formal synthesis of nebivolol, we prepared two chromane building blocks with fluorine and iodine which was transformed to diaryliodonium salt for labelling of $^{18}F$. Two epoxide building blocks were readily prepared from commercially available chromene carboxylic acids (1, 8). Then, the amino alcohol building block (15) was prepared by ammonolysis of epoxide (14) followed by coupling reaction with the other building block, epoxide (7). Diaryliodonium salt, a precursor for $^{18}F$-aromatic substitution, was synthesized in moderate yield which was readily subjected to $^{18}F$-aromatic substitution to give $^{18}F$-labelled nebivolol.

Effect of Calcium Antagonists on the Cardiac ${\beta}$-Adrenergic Receptors (칼슘 길항제가 심장 ${\beta}$-Adrenergic Receptors에 미치는 영향)

  • 이신웅;김정구
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • It has been known that calcium antagonists also inhibit the radioligand binding to muscarinic and $\alpha$-adrenergic receptors and, in case of verapamil, these inhibitions may play a role in the effects of verapamil on the heart. In this study, the effects of nicardipine, nifedipine, nimodipine, diltiazem and verapamil on the binding of [$^3H$]dihydroalprenolol (DHA) to dog cardiac ${\beta}$-adrenergic receptors were examined. A single uniform [$^3H$]DHA binding site ($K_D/= 5nM\;and\;B_{max}=2600$ fmol/mg protein) was identified in dog cardiac sarcolemma. [$^3H$]DHA binding was not affected by the usual therapeutic concentrations of these calcium antagonists (nanomolar range) but in the "nonspecific"concentration ranges ($28-180{\mu}m$) these drugs inhibited [$^3H$]DHA binding to $\beta$-adrenergic receptors. Nicardipine, nifedipine, nimodipine and diltiazem competed for [$^3H$]DHA binding to ${\beta}$-adrenergic receptors with dissociation constants ($K_i$) of $28{\mu}m,\' 74{\mu}m, 39{\mu}m \;and \;35{\mu}m,$ respectively. Verapamil ($K_i=176.5 {\mu}m$) was less potent inhibitor than other drugs and this inhibition was noncompetitive; the maximal binding capacity ($B_{max}$) $300 {\mu}m$ verapamil without change in the apparent dissociation constant (4K_D$) for DHA. These results indicate that the inhibitory action of calcium antagonists at high concentrations on ${\beta}$-adrenergic receptors is not involved in the therapeutic effects of these drugs by the calcium channel blocking action.

  • PDF

Vasomotor Regulation of the Israeli Carp (Cyprinus carpio) Ventral Aorta by Cholinergic and Adrenergic Neurotransmitters (콜린성 및 아드레날린성 신경전달물질에 의한 이스라엘잉어 복대동맥의 혈관긴장도 조절기능)

  • Park, Kwan-Ha
    • Korean Journal of Ichthyology
    • /
    • v.12 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • Depending on the fish species the vascular tone is distinctively regulated by numerous vasoactive substances. In most fish species the regulatory role of autonomic neurotransmitters and other vasoactive substances are not well defined. This research was designed to delineate the regulatory role of various endogenous autonomic neurotransmitters known to be important in mammalian vascular systems on isolated Israeli carp ventral aorta. Acetylcholine(ACh) contracted the aorta regardless of the pre-existing level of vascular tone, and the contraction was almost completely abolished by a cholinergic-muscarinic antagonist atropine. Endogenous, multiple receptor ($\alpha$ and $\beta$)-acting adrenergic agonist epinephrine (Epi) relaxed the vessel in the presence and absence of the pre-existing tones. Another endogenous multiple receptoracting agonist norepinephrine (NE) weakly contracted the aorta in non-preconstrcted state, but the response was reversed to relaxation when preconstricted. Isoproterenol, ${\alpha}\;{\beta}$ adrenergic receptor agonist, was a potent vasodilator whereas an ${\alpha}_1$ agonist phenyephrine was a contractor. The ${\alpha}_2$ adrenergic receptor agonist clonidine has not any significant effect in altering the vascular tone. The vasorelaxing action of Epi, NE and isoproterenol was significantly attenuated by $\beta$ receptor antagonist propranolol. These results imply that ACh may primarily play a contractor role via muscarinic receptor activation while adrenergic agonists, Epi and NE, are relaxants through activation of $\beta$ adrenergic receptors in vivo.

  • PDF