• Title/Summary/Keyword: admixture content

Search Result 213, Processing Time 0.019 seconds

Expansion ratio estimation of expandable foam grout using unit weight

  • WooJin Han;Jong-Sub Lee;Thomas H.-K. Kang;Jongchan Kim
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.471-479
    • /
    • 2024
  • In urban areas, appropriate backfilling design is necessary to prevent surface subsidence and subsurface cavities after excavation. Expandable foam grout (EFG), a mixture of cement, water, and an admixture, can be used for cavity filling because of its high flowability and volume expansion. EFG volume expansion induces a porous structure that can be quantified by the entrapped air content. This study observed the unit weight variations in the EFG before and after expansion depending on the various admixture-cement and water-cement ratios. Subsequently, the air content before and after expansion and the gravimetric expansion ratios were estimated from the measured unit weights. The air content before expansion linearly increased with an increase in the admixture-cement ratio, resulting in a decrease in the unit weight. The air content after the expansion and the expansion ratio increased nonlinearly, and the curves stabilized at a relatively high admixture-cement ratio. In particular, a reduced water-cement ratio limits the air content generation and expansion ratio, primarily because of the short setting time, even at a high admixture-cement ratio. Based on the results, the relationship between the maximum expansion ratio of EFG and the mixture ingredients (water-cement and admixture-cement ratios) was introduced.

Fundamental Properties of Self-Compacting Concrete Using Viscosity Modifying Admixture (증점제를 사용한 고유동콘크리트의 기초 물성)

  • 김진철;안태송;문한영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.69-78
    • /
    • 1999
  • Hydroxyethyl cellulose -based-viscosity modifying admixture and melamine-basd-superplasticizer were selected to be admixtures for self-compacting concrete based on the test results of fluidity and air content of mortar using 3 different viscosity modifying admixtures. The experimental results show that the initial and final set of self-compacting concrete and fly ash concrete with viscosity modifying admixture only have been delayed approximately 5 hours and 8~9 hours, respectively. It is found that the optimum dosage of viscosity modifying admixtures, coarse aggregate and cement content are 0.2% of water content, under 742 kg/$\textrm{m}^3$ and over 364 kg/$\textrm{m}^3$, respectively. Test results also show that the optimum fly ash in replacement of cement is 10% of cement weight for the enhancement of fluidity and long-term strength.

A Study on Drying Shrinkage of the High-Strength Concrete using the Garnet (가네트를 활용한 고강도 콘크리트의 건조수축 특성 연구)

  • Jang Ju-Young;Yoon Yo-Hyun;Park Jung-Min;Kim Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.676-679
    • /
    • 2004
  • In this study, we considered the characteristic of drying shrinkage from age of high strength concrete with garnet minute powder to be industry by-product. The factors of experiment are unit water content$(160kg/m^3)$, water-binder ratio(30, $35\%$), fine aggregate ratio(40, 42, $44\%$), admixture replacement ratio(0, 10, $20\%$), admixture type(garnet minute powder, fly ash, blast-furnace slag). We make a comparative study of shrinkage about concrete with a passage of age(1, 3, 7, 14, 28, 56, 91 days). As a result of experiment, we reach a conclusion as follow. In the same mix condition, as unit water content and fine aggregate ratio go up, the drying shrinkage ratio increase. In the drying shrinkage ratio according to admixture replacement ratio, it goes up when admixture replacement Ratio increase in case of fly ash and blast-furnace slag. But, drying shrinkage ratio decrease when admixture replacement ratio increase in case of garnet minute powder.

  • PDF

Spalling Properties of High Strength Concrete Mixed with Various Mineral Admixtures Subjected to Fire

  • Han, Cheon-Goo;Han, Min-Cheol;Heo, Young-Sun
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • This study investigates the spalling properties of high strength concrete designed with various types of mineral admixture and diverse content ratios of polypropylene (PP) fiber. Experimental factors considered in series I are four pozzolan types of mineral admixture and series II consists of three shrinkage reducing types of mineral admixture. PP fiber was added 0.05, 0.10 and 0.15vol. % in each mixture of series I and series II, so that totally 27 specimens including control concretes in each series were prepared. Test results showed that the increase of fiber content decreased the slump flow of fresh concrete and increased or decreased the air content depending on the declining ratio of slump flow. For the properties of compressive strength, all specimens were indicated at around 50 MPa, which is high strength range; especially all specimens in series II were 60 MPa. Fire test was conducted in standard heating curve of ISO 834 with ${\phi}100{\times}200\;mm$ size of cylinder moulds for 1 hour. The specimens incorporating silica fume exhibited severe spalling and most specimens without the silica fume could be protected from the spalling occurrence in only 0.05vol % of PP fiber content. This fire test results demonstrated that the spalling occurrence in high strength concrete was not only affected by concrete strength related to the porosity of microstructure but also, even more influenced by micro pore structure induced by the mineral admixtures.

Fire Resistance Properties of High Strength Concrete Made with Various Admixture Types and Fiber Content (혼화재 종류 및 섬유 혼입률 변화에 따른 고강도 콘크리트의 내화특성)

  • Jang, Ki-Hyun;Pei, Chang-Chun;Jin, Hu-Lin;Jee, Suk-Won;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.63-66
    • /
    • 2007
  • This study investigates the fire resistance properties of high strength concrete, around 60MPa class, designed with various admixture types and fiber content. Test showed that the increase of fiber content decreased the fluidity and slightly inclined the air content of fresh concrete. However, the fiber content in concrete did not affect the compressive strength. For the addition of admixture, specimens adding the shrinkage-reducing-agent (SR) indicated the strength value at 70MPa, which is followed by incorporating silica fume (SF) at 66MPa, the combination of expansive admixture (EA) and SR at 63MPa, only EA at 59MPa, blast furnace slag (BS) at 58MPa and fly ash (FA) at 50MPa in an order. After completing the fire test, all specimens adding 0.05vol.% of polypropylene fiber exhibited protection of spatting, except for the specimens incorporating loft of SF and incorporating 20% of SF with only SR and the combination of EP and SRA, respectively. Therefore the most effective result of this study was shown in the specimens incorporating love of FA and 30% of BS and incorporating 20% of SF with 5 % of EA. It is expected that this test results will be crucial references in near future to develope the spatting resistance method of high strength concrete.

  • PDF

A Study on the Development of Drying Shrinkage-Reducing Superplasticizer (건조수축 저감형 유동화제의 개발에 관한 연구)

  • Shin Jae-Kyung;Oh Chi-Hyun;Choi Jin-Man;Lee Seong-Yeun;Han Min-Cheol;Han Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.501-504
    • /
    • 2005
  • This paper discusses the development of drying shrinkage reducing type superplasticizer(DSRS) by varying dosage of polycarboxylic based superplasticizer, liquid type expansive admixture and antifoaming agent. Adequate mixture proportion of each admixture is fixed at 0.3$\%$ of superplasticizer, 0.15$\%$ of liquidtype expansive admixture and 0.0005$\%$ of antifoaming agent to insure the improvement in drying shrinkage as well as comparable to the slump and air content of conventional concrete. With this mixture proportion, compressive strength of concrete using DSRS is comparable to that of conventional concrete. The use of DSRS studied by the authors has a favorable effect on reducing drying shrinkage due to the effect of water content and expansion by expansive admixture.

  • PDF

A Study on the Quality Characteristics of Concrete Using Supper Plasticizer (고성능감수제를 사용한 콘크리트의 품질특성에 관한 연구)

  • 배수호;신의균;윤상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.132-137
    • /
    • 1993
  • The purpose of this study is to evaluate the quality characteristics of concrete using super plasticizer which is on the market within the country. For this purpose, nine kinds of super plasticizer are compared and analyzed for the slump , air content, unit weight, water-reducing percent and ratios of compressive strength with admixture content. As a result, the optimum quantity of admixture content were obtaining for ordinary and high strength concrete using super plasticizer.

  • PDF

Effects of Chemical Admixture on the Quality Characteristics of Grout for Prestressed Concrete (화학 혼화제가 PSC용 그라우트 품질 특성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Ahn, Ki-Hong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • The study investigates the effects of the content and using method of chemical admixtures such as superplasticizer and viscosity modifying admixture on the fluidity, bleeding ratio, volumetric change and compressive strength of the grout in order to provide basic data for the development of high-quality grout for prestressed concrete. It appeared that the combination of superplasticizer and viscosity modifying admixture decreased the fluidity of grout with small content of superplasticizer. On the contrary, Grout used more than 0.1% of superplasticizer appeared to have significant effect on the improvement of the fluidity. On the other hand, bleeding of grout reduced according to increasing the content of viscosity modifying admixture. Superplasticizer with less than 0.05% had practically no effect on the reduction of bleeding, whereas superplasticizer with more than 0.1% appear to have significant effect on the reduction of bleeding. Also the combination of superplasticizer with 0.15% and viscosity modifying admixture with 0.15% resulted in satisfactory fluidity accompanied with fair reduction of bleeding and shrinkage of the grout.

Variation of Critical Chloride Content of Rebar Embedded in Concrete with Admixture (혼화재 혼입에 따른 콘크리트에 매립된 철근의 부식 임계 염화물량의 변화)

  • Park, Jang-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.511-520
    • /
    • 2019
  • The critical chloride content of rebar embedded in concrete was experimentally evaluated according to the admixture replacement ratio and admixture type. Four types of reinforced concrete were mixed OPC 100%, OPC 70% + GGBFS 30%, OPC 40% + GGBFS 60%, and OPC 40% + GGBFS 40% + FA 20%. NaCl solution was supplied to the specimens, and the open circuit potential of the embedded rebar was monitored. The specimens determined to initiate corrosion were cut at intervals of 5mm from the NaCl solution supply surface and conducted to chlorine ion profile. Corrosion initiation time of rebar embedded in concrete was delayed as the admixture replacement ratio increased. Looking at the critical chloride content of the types of reinforced concrete, it was highest in OPC 1.46kg/㎥, followed in order by S30 0.98kg/㎥, TBC 0.74kg/㎥, and S60 0.71kg/㎥.

Evaluation on Performance of New Viscosity Modifying Admixture for Concrete Agent (콘크리트 혼화제로 활용하기 위한 신규 증점제의 성능 평가)

  • Lim, Seo-Hyung;Kahng, Goon-Gjung;Kim, Jae-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.177-184
    • /
    • 2000
  • The purpose of this study is to evaluate the performance of a new viscosity modifying admixture for concrete agent. For this purpose, selected test variables were the ratio of water to cement, the ratio of cement to fine aggregate, contents of superplasticizer, contents of viscosity modifying admixture. As a result of this study, it has been found that addition of viscosity modifying admixture to mortar modfies its fluidity and reduces its segregation by increasing the mortar viscosity. And it has been found that a new viscosity modifying admixture do not significantly affect the setting time, air content of mortar.

  • PDF