• 제목/요약/키워드: adjacent structures

검색결과 721건 처리시간 0.024초

Anatomical Study on Hand Gworeum Skin in Human

  • Park, Kyoung-Sik
    • 대한한의학회지
    • /
    • 제41권4호
    • /
    • pp.72-77
    • /
    • 2020
  • Objectives: This study was carried out to concrete the concept of Hand Gworeum Skin referred in Suwen of Huangdi Neijing. Methods: The Hand Gworeum Meridian was labeled with latex in the body surface of the cadaver, subsequently dissecting a superficial fascia and muscular layer in order to observe internal structures. Results: Skin histologically encompasses a common integument and a immediately below superficial fascia, this study established the skin boundary with adjacent structures such as relative muscle, tendon as its compass. The realm of the Hand Gworeum Skin is as follows: The skin close to the nipple on the 4th intercostal space, the interceps of biceps brachii muscle, the cubital surface at ulnad of bicipital aponeurosis, the anterior surface of the forearm, between flexor carpi radialis and palmaris longus(from wrist crease to 5chon above), the palm between the 3rd and 4th metacarpals on the cross part with the palm crease, the radiod from the middle finger nail(or the end of middle finger). The realm of the Hand Gworeum Skin is situated on between Hand Taeeum Skin and Hand Soeum Skin in front of arm. Conclusion: The realm of Hand Gworeum Skin from the anatomical viewpoint seems to be the skin area outside the superficial fascia or the muscle involved in the pathway of the Hand Gworeum Meridian vessel, Collateral Meridian vessel, and Meridian muscle, being considered adjacent vessels or nerves at the same time.

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

주위 조직으로 파열된 종격동 기형종 1예 (Spontaneous Rupture of Mediastinal Teratoma into Adjacent Tissues)

  • 전정배;정정환;문태훈;조재화;류정선;곽승민;이홍렬;조철호;한혜승;김광호
    • Tuberculosis and Respiratory Diseases
    • /
    • 제47권3호
    • /
    • pp.400-405
    • /
    • 1999
  • 저자들은 간헐적으로 객혈을 하였던 18세 여자 환자에서 종격동 기형종의 자연파열에 의해 발현될 수 있는 심낭삼출 및 흉막삼출, 폐렴, 객혈 등의 소견이 동시에 발현된 증례를 경험하였기에 문헌고찰과 함께 보고하는 바이다.

  • PDF

The seismic reliability of two connected SMRF structures

  • Aval, Seyed Bahram Beheshti;Farrokhi, Amir;Fallah, Ahmad;Tsouvalas, Apostolos
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.151-164
    • /
    • 2017
  • This article aims to investigate the possible retrofitting of a deficient building with soft story failure mode by connecting it to an adjacent building which is designed based on current code with friction dampers at all floors. Low cost and high performance reliability along with significant energy dissipation pertaining to stable hysteretic loops may be considered in order to choose the proper damper for connecting adjacent buildings. After connecting two neighbouring floors by friction dampers, the sliding forces of dampers at various stories are set in two arrangements: uniform sliding force and then variable sliding force. In order to account for the stochastic nature of the seismic events, incremental dynamic analyses are employed prior and after the installation of the friction dampers at the various floors. Based on these results, fragility curves and mean annual rate of exceedance of serviceability and ultimate limit states are obtained. The results of this study show that the collapse mode of the deficient building can affect the optimum arrangement of sliding forces of friction dampers at Collapse Prevention (CP) performance level. In particular, the Immediate Occupancy (IO) performance level is not tangible to the sliding force arrangement and it depends solely on sliding force value. Generally it can be claimed that this rehabilitation scheme can turn the challenge of pounding two adjacent buildings into the opportunity of dissipating a large amount of the seismic input energy by the friction dampers, thus improving significantly the poor seismic performance of the deficient structure.

원형 수직구 굴착에 따른 발생 지반침하 분석 (Analysis of ground settlement due to circular shaft excavation)

  • 손무락;이강렬
    • 한국터널지하공간학회 논문집
    • /
    • 제25권2호
    • /
    • pp.87-99
    • /
    • 2023
  • 지반굴착은 필연적으로 인접지반의 지반변위를 유발시키며, 지반변위에 노출된 구조물 및 시설물들은 다양한 피해를 입을 수 있다. 따라서 굴착유발 인접구조물 및 시설물의 손상 및 피해를 최소화하기 위해서는 우선적으로 굴착으로 인해 발생하는 인접지반에서의 지반변위(침하 및 수평변위)를 예측하여야 한다. 흙막이 굴착 유발 지반변위 정보는 상대적으로 많이 존재하지만 원형 형태의 수직구 굴착에 대한 지반변위 정보는 충분치 않다. 본 연구에서는 수직구 굴착에 대한 사례분석 및 흙막이 굴착과의 비교를 통해서 수직구 굴착유발 인접지반 침하예측에 대한 정보를 제공하고자 한다. 본 연구를 통해서 수직구 굴착 시 침하관리 기준으로서 흙막이 굴착의 침하기준을 사용하는 것은 안전성 측면에서 보수적인 접근방법으로 판단되나 경제성 측면을 고려할 때 벽체의 과다설계를 초래할 수 있어 수직구 굴착에 대해 보다 합리적인 침하기준이 필요한 것으로 나타났다.

인접(隣接) 임분(林分)의 종류(種類), 계층구조(階層構造) 및 식생단위(植生單位)에 따른 아까시나무의 이입(移入)에 관(關)한 연구(硏究) (The Study on the Invasion of Robinia pseudoacacia into Adjacent Forest Stand according to Forest Types, Stand Structures and Vegetation Units)

  • 윤충원;오승환;이영근;홍성천;김재헌
    • 한국산림과학회지
    • /
    • 제90권3호
    • /
    • pp.227-235
    • /
    • 2001
  • 아까시나무가 인접 임분의 종류와 계층구조 그리고 식생단위에 따른 이입 정도를 분석하였던 바 다음과 같이 요약할 수 있었다. 1) 인접 임분의 종류에 관계없이 전 방위로 아까시나무가 이입하고 있었다. 그러나 계층구조가 잘 발달된 임분에는 이입하기 어려우나 임분이 소개되었거나 아까시나무가 재해를 입었을 경우에는 인접 임분 내에 빠르게 이입할 것으로 예측되었다. 2) 아까시나무는 인접 임분의 식생단위에 관계없이 전 방위로 이입하고 있으나, 식생단위 간에 차이가 있었다. 갈참나무군락과 졸참나무군락 내에서는 아까시나무의 우점도가 +~2로서 낮게 나타났으며, 소나무군락, 리기다소나무군락, 굴참나무군락 및 상수리나무군락에서는 아까시나무의 우정도가 1~4로서 높게 나타나는 경향이 있었다. 소나무군락 내의 3개 식생단위 중에서는 산박하소군(I-A-1)에서 아까시나무의 우점도가 + ~2로서 가장 낮게 출현하였다.

  • PDF

Estimation of elastic seismic demands in TU structures using interactive relations between shear and torsion

  • Abegaz, Ruth A.;Lee, Han Seon
    • Earthquakes and Structures
    • /
    • 제19권1호
    • /
    • pp.59-77
    • /
    • 2020
  • The code static eccentricity model for elastic torsional design of structures has two critical shortcomings: (1) the negation of the inertial torsional moment at the center of mass (CM), particularly for torsionally-unbalanced (TU) building structures, and (2) the confusion caused by the discrepancy in the definition of the design eccentricity in codes and the resistance eccentricity commonly used by engineers such as in FEMA454. To overcome these shortcomings, using the resistance eccentricity model that can accommodate the inertial torsional moment at the CM, interactive relations between shear and torsion are proposed as follows: (1) elastic responses of structures at instants of peak edge-frame drifts are given as functions of resistance eccentricity, and (2) elastic hysteretic relationships between shear and torsion in forces and deformations are bounded by ellipsoids constructed using two adjacent dominant modes. Comparison of demands estimated using these two interactive relations with those from shake-table tests of two TU building structures (a 1:5-scale five-story reinforced concrete (RC) building model and a 1:12-scale 17-story RC building model) under the service level earthquake (SLE) show that these relations match experimental results of models reasonably well. Concepts proposed in this study enable engineers to not only visualize the overall picture of torsional behavior including the relationship between shear and torsion with the range of forces and deformations, but also pinpoint easily the information about critical responses of structures such as the maximum edge-frame drifts and the corresponding shear force and torsion moment with the eccentricity.

Sensitivity Analysis Related to Redundancy of Regular and Irregular Framed Structures after Member Disappearance

  • Ito, Takumi;Takemura, Toshinobu
    • 국제초고층학회논문집
    • /
    • 제3권4호
    • /
    • pp.297-304
    • /
    • 2014
  • Recently, there have been some reported examples of structural collapse due to gravity, subsequent to damage from accident or an excitation that was not prepared for in the design process. A close view of new concepts, such as a redundancy and key elements, has been taken with the aim of ensuring the robustness of a structure, even in the event of an unexpected disturbance. The author previously proposed a sensitivity index of the vertical load carrying capacity to member disappearance for framed structures. The index is defined as the ratio of the load carrying capacity after a member or a set of an adjacent member disappears, to the original load carrying capacity. The member with the highest index may be regarded as a key element. The concept of bio-mimicry is being applied to various fields of engineering, and tree-shaped structures are sometimes used for the design of building structures. In this study a sensitivity analysis is applied to the irregular-framed structures such as tree-shaped structures.

매스 콘크리트 구조물의 연속 분할타설시 타설블록의 크기 및 타설순서를 고려한 합리적인 수화열 해석 (Realistic Analysis Method for Continuously Block-Placed Mass Concrete Structures Considering Block Size and Sequence of Concrete Placement)

  • 오병환;전세진;유성원
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.59-67
    • /
    • 1999
  • The mass concrete structures are generally constructed in an incremental manner by deviding the whole structures by a series of many blocks. The temperature and stress distributions of any specific block are continuously affected by the blocks placed before and after the specific block. For an accurate analysis of mass concrete structures, the sequence of all the blocks must be accordingly considered including the change of material properties with time for those blocks considered. The purpose of this study is to propose a realistic analysis method which can take into account not only the influence of the sequence, time interval and size of concrete block placement on the temperatures and stresses, but also the change of material properties with time. It is seen from this study that the conventional simplified analysis, which neglects material property changes of some blocks with time and does not consider the effect of adjacent blocks in the analysis, may yield large discrepancies in the temperature and stress distributions of mass concrete structures. This study gives a method to choose the minimum number of blocks required to obtain reasonably accurate results in analysis. The study provides a realistic method which can determine the appropriate size and time interval of block placement, and can be efficiently used in the design and construction of mass concrete structures.

Estimating the maximum pounding force for steel tall buildings in proximity subjected to wind

  • Tristen Brown;Ahmed Elshaer;Anas Issa
    • Wind and Structures
    • /
    • 제39권1호
    • /
    • pp.47-69
    • /
    • 2024
  • Pounding of structures may result in considerable damages, to the extent of total failure during severe lateral loading events (e.g., earthquakes and wind). With the new generation of tall buildings in densely occupied locations, wind-induced pounding becomes of higher risk due to such structures' large deflections. This paper aims to develop mathematical formulations to determine the maximum pounding force when two adjacent structures come into contact. The study will first investigate wind-induced pounding forces of two equal-height structures with similar dynamic properties. The wind loads will be extracted from the Large Eddy Simulation models and applied to a Finite Element Method model to determine deflections and pounding forces. A Genetic Algorithm is lastly utilized to optimize fitting parameters used to correlate the maximum pounding force to the governing structural parameters. The results of the wind-induced pounding show that structures with a higher natural frequency will produce lower maximum pounding forces than those of the same structure with a lower natural frequency. In addition, taller structures are more susceptible to stronger pounding forces at closer separation distances. It was also found that the complexity of the mathematical formula from optimization depends on achieving a more accurate mapping for the trained database.