• Title/Summary/Keyword: adjacent channel

Search Result 444, Processing Time 0.031 seconds

An Auction based Hierarchical Link Allocation Algorithm for Throughput Improvement of Relay Station Systems (Relay Station 시스템의 Throughput 향상을 위한 Auction 기반 계층적 링크 할당 알고리듬)

  • Kang, Hae-Lynn;Yu, Hye-In;Kim, Nak-Myeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.11-18
    • /
    • 2009
  • In this paper, a hierarchical link allocation algorithm between mobile stations (MSs) and the corresponding base station (BS) by an optimal utilization of relay stations (RSs) is proposed to improve throughput of RS systems. In the proposed hierarchical algorithm, each RS operates cognitive radio functions to sense the degree of satisfaction in the quality of services (QoSs) and then selects the candidate set of MSs to have links with the RS. Such information is reported to the BS, where an auction process is performed to get an optimal allocation of communication links between the MSs and the BS. To maximize system throughput, the proposed auction algorithm is conducted upon bidding prices of communication links, considering both the co-channel interference (CCI) information shared among adjacent cells and the QoS enhancement information for each MS collected from RSs. The BS then switches the communication links of the auction winner MSs through the corresponding RS. The computer simulation shows that the proposed algorithm enhances the user QoS more than the conventional algorithm, especially for RS systems with more users requiring higher QoS. The proposed algorithm has also been proved to have more robust performance than the conventional one when the traffic load is higher and the CCI becomes stronger.

Comparison and Performance analysis of Wavelet OFDM system and FD-OFDM (웨이블릿 OFDM 시스템과 FD-OFDM 시스템 성능 비교 분석)

  • Lee, Junseo;Kim, Ji-Hoon;Kim, Whanwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.34-42
    • /
    • 2013
  • In this paper, we compare the performance of wavelet OFDM (Orthogonal Frequency Division Multiplexing) and FD-OFDM(Frequency diversity OFDM) system with conventional OFDM system. Wavelet OFDM system uses wavelet transform rather than Fourier transform and contains intermediate characteristics of CDM (Code Division Multiplexing) and OFDM. In wavelet OFDM system, inter-symbol interference (ISI) can be suppressed effectively and adjacent channel interference can be also minimized well. In FD-OFDM system, each parallel branch symbol is multiplied by the orthogonal sequence and distributed into all sub-carriers. Then, each sub-carrier transmits information composed of the symbol components of all parallel branches in the given frame. FD-OFDM contains the frequency diversity characteristic and, therefore, FD-OFDM can be robust to the narrowband interference. For the comparison among different systems, BER (Bit-Error Rate) performances are evaluated in the presence of narrow-band interference and a harmonic noise channel. From the evaluation results, compared to the conventional OFDM, wavelet OFDM and FD-OFDM shows better robustness against the interference and, especially, wavelet OFDM is the most robust in harmonic noise channel.

Performance Evaluation of Inter-Sector Collaborative PF Schedulers for Multi-User MIMO Transmission Using Zero Forcing (영점 강제 다중 사용자 MIMO 전송 시 셀 간 정보 교환을 활용한 협력적 PF 스케줄러의 성능 평가)

  • Lee, Ji-Won;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • Multi-user MIMO (Multiple-Input Multiple-Output) systems require collaborative PF schedulers to improve the performance of the log sum of average transmission rates. While the performance of single cell based conventional PF schedulers has been evaluated over various channel conditions, scheduling algorithms by multiple base stations which select multiple users over a given time frame and their performance require further investigations. In this paper, we apply a collaborative PF scheduler to the distributed multi-user MIMO system, which assigns radio resources to multiple users by exchanging user channel information from base stations located in three adjacent sectors. We further evaluate its performance in terms of the log sum of average transmission rates. The performance is compared to that of the full-search collaborative PF scheduler which searches over all possible combinations of user groups, and that of a parallel PF scheduler that determines users without channel information exchange among base stations. We show the log sum of average transmission rates of the collaborative PF scheduler outperforms that of the parallel PF scheduler in low percentile region. In addition, the collaborative PF scheduler exhibits a negligible performance degradation when compared to the full-search collaborative PF scheduler while a significant reduction of the computational complexity is achievable at the same time.

Fabrication of Three-Dimensional Scanning System for Inspection of Mineshaft Using Multichannel Lidar (다중채널 Lidar를 이용한 수직갱도 조사용 3차원 형상화 장비 구현)

  • Soolo, Kim;Jong-Sung, Choi;Ho-Goon, Yoon;Sang-Wook, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.451-463
    • /
    • 2022
  • Whenever a mineshaft accidentally collapses, speedy risk assessment is both required and crucial. But onsite safety diagnosis by humans is reportedly difficult considering the additional risk of collapse of the unstable mineshaft. Generally, drones equipped with high-speed lidar sensors can be used for such inspection. However, the drone technology is restrictively applicable at very shallow depth, failing in mineshafts with depths of hundreds of meters because of the limit of wireless communication and turbulence inside the mineshaft. In previous study, a three-dimensional (3D) scanning system with a single channel lidar was fabricated and operated using towed cable in a mineshaft to a depth of 200 m. The rotation and pendulum movement errors of the measuring unit were compensated for by applying the data of inertial measuring unit and comparing the similarity between the scan data of the adjacent depths (Kim et al., 2020). However, the errors grew with scan depth. In this paper, a multi-channel lidar sensor to obtain a continuous cross-sectional image of the mineshaft from a winch system pulled from bottom upward. In this new approach, within overlapped region viewed by the multi-channel lidar, rotation error was compensated for by comparing the similarity between the scan data at the same depth. The fabricated system was applied to scan 0-165 m depth of the mineshaft with 180 m depth. The reconstructed image was depicted in a 3D graph for interpretation.

A development of DS/CDMA MODEM architecture and its implementation (DS/CDMA 모뎀 구조와 ASIC Chip Set 개발)

  • 김제우;박종현;김석중;심복태;이홍직
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1210-1230
    • /
    • 1997
  • In this paper, we suggest an architecture of DS/CDMA tranceiver composed of one pilot channel used as reference and multiple traffic channels. The pilot channel-an unmodulated PN code-is used as the reference signal for synchronization of PN code and data demondulation. The coherent demodulation architecture is also exploited for the reverse link as well as for the forward link. Here are the characteristics of the suggested DS/CDMA system. First, we suggest an interlaced quadrature spreading(IQS) method. In this method, the PN coe for I-phase 1st channel is used for Q-phase 2nd channels and the PN code for Q-phase 1st channel is used for I-phase 2nd channel, and so on-which is quite different from the eisting spreading schemes of DS/CDMA systems, such as IS-95 digital CDMA cellular or W-CDMA for PCS. By doing IQS spreading, we can drastically reduce the zero crossing rate of the RF signals. Second, we introduce an adaptive threshold setting for the synchronization of PN code, an initial acquistion method that uses a single PN code generator and reduces the acquistion time by a half compared the existing ones, and exploit the state machines to reduce the reacquistion time Third, various kinds of functions, such as automatic frequency control(AFC), automatic level control(ALC), bit-error-rate(BER) estimator, and spectral shaping for reducing the adjacent channel interference, are introduced to improve the system performance. Fourth, we designed and implemented the DS/CDMA MODEM to be used for variable transmission rate applications-from 16Kbps to 1.024Mbps. We developed and confirmed the DS/CDMA MODEM architecture through mathematical analysis and various kind of simulations. The ASIC design was done using VHDL coding and synthesis. To cope with several different kinds of applications, we developed transmitter and receiver ASICs separately. While a single transmitter or receiver ASC contains three channels (one for the pilot and the others for the traffic channels), by combining several transmitter ASICs, we can expand the number of channels up to 64. The ASICs are now under use for implementing a line-of-sight (LOS) radio equipment.

  • PDF

Biogeochemical Reactions in Hyporheic Zone as an Ecological Hotspot in Natural Streams (자연 하천의 생태학적 중요 지점으로서 지표수-지하수 혼합대의 생지화학적 기작)

  • Kim, Young-Joo;Kang, Ho-Jeong
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.123-130
    • /
    • 2009
  • Hyporheic zone is an area where hydraulic exchanges occur between surface water and ground water. Such transient area is anticipated to facilitate diverse biogeochemical reactions by providing habitats for various microorganism. However, only a few data are available about microbial properties in hyporheic zone, which would be important in better understanding of biogeochemical reactions in whole streams. The study site is Naesung stream, located in the north Kyoung-Sang Province, of which sediment is sandy with little anthropogenic impacts. Soil samples were collected from a transect placed perpendicular to stream flow. The transect includes upland fringe area dominated by Phragmites japonica, bare soil, and soil adjacent to water. In addition, soil samples were also collected from downwelling and upwelling areas in hyporheic zone within the main channel. Soils were collected from 3 depth in each area, and water content, pH, and DOC were measured. Various microbial properties including extracellular enzyme activities ($\beta$-glucosidase, N-acetylglucosaminidase, phosphatase and arylsulfatase), and microbial community structure using T-RFLP were also determined. The results exhibited a positive correlation between water content and DOC, and between extracellular enzyme activities and DOC. Distinctive patterns were observed in soils adjacent to water and hyporheic zone compared with other soils. Overall results of study provided basic information about microbial properties of hyporheic zone, which appeared to be discernable from other locations in the stream corridor.

  • PDF

An Adaptive Adjacent Cell Interference Mitigation Method for Eigen-Beamforming Transmission in Downlink Cellular Systems (하향 링크 셀룰러 시스템의 Eigen-Beamforming 전송을 위한 적응적 인접 셀 간섭 완화 방법)

  • Chang, Jae-Won;Kim, Se-Jin;Kim, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.248-256
    • /
    • 2009
  • EB(Eigen-Beamforming) has widely been applied to MIMO(Multiple-Input Multiple-Output) systems to form beams which maximize the effective signal-to-interference plus noise ratio(SINR) of the receiver using the singular value decomposition(SVD) of the MIMO channel. However, the signal detection performance for the mobile station near the cell boundary is severely degraded and the transmission efficiency decreases due to the influence of the interference signal from the adjacent cells. In this paper, we propose an adaptive interference mitigation method for the EB transmission, and evaluate the reception performance. In particular, a reception strategy which adaptively utilizes optimal combining(OC) and minimum mean-squared error for Intercell spatial demultiplexing(MMSE-lSD) is proposed, and the reception performance is investigated in terms of the effective SINR and system capacity. For the average system capacity, the proposed adaptive reception demonstrates the performance enhancement compared to the conventional EB reception using the receiver beamforming vector, and up to 2 bps/Hz performance gain is achieved for mobile station located at the cell edge.

Pulse Broadening and Intersymbol Interference of the Optical Gaussian Pulse Due to Atmospheric Turbulence in an Optical Wireless Communication System (광 무선통신시스템에서 대기 교란으로 인한 광 가우시안 펄스의 펄스 퍼짐과 부호 간 간섭에 관한 연구)

  • Jung, Jin-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.417-422
    • /
    • 2005
  • When an optical pulse propagates through the atmospheric channel, it is attenuated and spreaded by the atmospheric turbulence. This pulse broadening produces the intersymbol interference(ISI) between adjacent pulses. Therefore, adjacent pulses are overlapped, and the bit rates and the repeaterless transmission length are limited by the ISI. In this paper, the ISI as a function of the refractive index structure constant that presents the strength of atmospheric turbulence is found using the temporal momentum function, and is numerically analyzed fer the basic SONET transmission rates. The numerical results show that ISI is gradually increasing at the lower transmission rate than the OC-192(9.953 Gb/s) system and is slowly converging after rapid increasing at the higher transmission rate than the OC-768(39.813 Gb/s) system as the turbulence is stronger. Also, we know that accurate information transmission is possible to 10[km] at the OC-48(2.488 Gb/s) system under any atmospheric turbulence, but is impossible under the stronger turbulence than $10^{-14}[m^{-2/3}]$ at the 100 Gb/s system, $10^{-13}[m^{-2/3}]$ at the OC-768 system, and $10^{-12}[m^{-2/3}]$ at the OC-192 system, because the ISI is seriously induced.

Transport Paths of Surface Sediment on the Tidal Flat of Garolim Bay, West Coast of Korea (황해 가로림만 조간대 표층퇴적물의 이동경로)

  • Shin, Dong-Hyeok;Yi, Hi-Il;Han, Sang-Joon;Oh, Jae-Kyung;Kwon, Su-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 1998
  • Two-dimensional trend-vector model of sediment transport is first tested in the tidal flat of Garolim Bay, mid-western coast of the Korean Peninsula. Three major parameters of surface sediment, i.e., mean grain size, sorting and skewness, are used for defining the best-fitting transport trend-vector on the sand ridge and muddy sand flat. These trend vectors are compared with the real transport directions determined from morphology, field observation and bedforms. The 15 possible cases of trend vectors are calculated from total sediments. In order to find the role of coarse sediments, trend vectors from sediments coarser than < 4.5 ${\phi}$, (sand size) are separately calculated from those of total sediments. As compared with the real directions, the best-fitting transport-vector model is the "case M" of coarse sediments which is the combined trend vectors of two cases: (1) finer, better sorted and more negatively skewed and (2) coarser, better sorted and more positively skewed. This indicates sand-size grains are formed by simpler hydrodynamic processes than total sediments. Transported sediment grains are better sorted than the source sediment grains. This indicates that consistent hydrodynamic energy can make sediment grains better sorted, regardless of complicated mechanisms of sediment transport. Consequently, both transported vector model and real transported direction show that the source of sediments are located outside of bay (offshore Yellow Sea) and in the baymouth. These source sediments are transported through the East Main Tidal Channel adjacent the baymouth. Some are transported from the subtidal zone to the upper tidal flat, but others are transported farther to the south, reaching the south tidal channel in the study area. Also, coarse sediment grains on the sand ridge are originally from the baymouth, and transported through the subtidal zone to the south tidal channel. These coarse sediments are moved to the northeast, but could not pass the small north tidal channel. It is interpreted that the great amount of coarse sediments is returned back to the outside of the bay (Yellow Sea) again through the baymouth during the ebb tide. The distribution of muddy sand in the northeastern part of study area may result from the mixing of two sediment transport mechanisms, i.e., suspension and bedload processes. The landward movement of sand ridge and the formation of the north tidal channel are formed either by the supply of coarse sediments originating from the baymouth and outside of the bay (subaqueous sand ridges including Jang-An-Tae) or by the recent relative sea-level rise.

  • PDF

A Cognitive Beamforming Scheme for Cross-Tier Interference Mitigation in Heterogeneous Cellular Networks (이종 셀룰러 망에서 계층 간 간섭완화를 위한 인지 빔형성 기법)

  • Seo, Ju-yeol;Park, Seungyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1387-1401
    • /
    • 2016
  • When a closed access policy in which only an authorized user is allowed to access to a given base station (BS) has been employed in heterogeneous cellular networks, a macro-cell user is used to experience strong cross-tier interference from its adjacent small-cell BSs to which the user is not allowed to access. To mitigate this problem, it has been proposed that a small-cell BS employs a beamforming vector which is orthogonal to the channel of the victim user. However, this technique requires considerable mutual exchange of information among the macro-cell BS, the macro-cell user, and the small-cell BS. In this paper, we propose a cognitive beamforming scheme, in which a small-cell BS employs the beamforming orthogonal to the victim users' channel without any explicit mutual information exchange. Particularly, the small-cell BS finds small- and macro-cell users experiencing the co-tier and cross-tier interferences from it, respectively. Then, it employs a beamforming which is orthogonal to the victim users' channels to mitigate the co-tier and cross-tier interferences. Using the system-level simulation, we demonstrate that the proposed scheme effectively mitigates the cross-tier interference problem.