• Title/Summary/Keyword: adjacent channel

Search Result 444, Processing Time 0.021 seconds

Dynamic Coverage Control to Improve Channel Utilization in IEEE 802.11 (IEEE 802.11에서 채널 이용율을 높이기 위한 동적 커버영역 제어)

  • 양덕용;이태진
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.195-199
    • /
    • 2003
  • BEE 802.11 Wireless LAN protocol uses fixed transmission power. It does not consider a power control mechanism based on the distance between the transmitter and the receiver in order to improve overall channel utilization. In home environment, where stations generally lie around an AP, the AP is subject to use transmission power more than it needs. And wireless LAN stations may require different minimal desired received power. If there are many adjacent BSSs in densely populated WLAN area, they might cause RF interference to one another. In this paper we focus on the improvement of aggregate utilization by mitigating RF interference among BSSs. We show that RF interference by APs can be reduced by controlling transmission power using Link Margin information. The reduced interference will then lead to the increased aggregate throughput which is efficient resource utilization.

  • PDF

A Study on Linearization of Intermodulation Distortion for WCDMA

  • Jeon, Joong-Sung;Kim, Dong-il
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.149-154
    • /
    • 2004
  • A linear power amplifier is particularly emphasized on the system using a linear modulations, such as 16QAM and QPSK with pulse shaping, because intermodulation distortion which causes adjacent channel interference and co-channel interference is mostly generated in a nonlinear power amplifier. In this paper, parameters of a linearization loop, such as an amplitude imbalance, a phase imbalance and a delay mismatch, are briefly analyzed to get a specific cancellation performance and linearization bandwidth Experimental results are presented for IMT-2000 frequency band The center frequency of the feedforward amplifier is 2140MHz with 60MHz bandwidth When the average output power of feedforward amplifier is 20 Watt, the intermodulation cancellation performance is more than 28dB. In this case, the output power of feedforward amplifier reduced 3.5dB because of extra delay line loss and coupling loss. The feedforward amplifier efficiency is more than 7% for multicarrier signals.

A Study on Implementation of Linear 25Watts High Power Amplifier for VDR (VDR을 위한 선형 25Watts 고출력 증폭기 구현에 관한 연구)

  • Choi, Jun-Su;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.389-391
    • /
    • 2011
  • This paper has been studied about design of linear 25Watt Power amplifier for VDR(VHF Data Radio). VDR's frequency band is 117.975~137MHz, and CSMA(Carrier Sense Multiple Access), D8PSK(Differential Eight Phase Shift Keyed), 25KHz's channel bandwidth use. It also stated in DO-281A MOPS output power, symbol constellation error, spurious emissions, adjacent channel power must be met. HPA is designed to meet DO-281A standard.

  • PDF

Transition-limited pulse-amplitude modulation technique for high-speed wireline communication systems

  • Eunji Song;Seonghyun Park;Jaeduk Han
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.974-981
    • /
    • 2023
  • This paper presents a transition-limited pulse-amplitude modulation (TLPAM) signaling method to enable a high data rate and robust wireline communications. TLPAM signaling addresses the impact of high intersymbol interference (ISI) ratios in conventional M-ary PAM signaling methods by limiting the maximum voltage transition level between adjacent symbols. The implementation of a TLPAM signaling encoder is realized by setting back the most significant bits (MSBs) in the queue. The correlation between TLPAM's maximum transition level, effective data rate, and eye width/height is analyzed with various channel loss parameters, followed by characterization and measurement results with a realistic channel setup. The analysis and experimental results reveal the effectiveness of the proposed TLPAM signaling scheme for achieving a high data rate with minimal interference.

Design and Performance Gain Evaluation of a Multi-Rank Codebook Utilizing Statistical Properties of the Spatial Channel Model (공간 채널 모델의 통계적 특성을 반영한 다중 랭크 코드북의 설계 및 성능 이득 평가)

  • Kim, Changhyeon;Sung, Wonjin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.723-731
    • /
    • 2016
  • A core technological base to provide enhanced data rates required by 5G mobile wireless communications is the improved bandwidth efficiency using massive multiple-input multiple-output (MIMO) transmission. MIMO transmission requires the channel estimation using the channel state information reference signaling (CSI-RS) and appropriate beamforming, thus the design of the codebook defining proper beamforming vectors is an important issue. In this paper, we propose a multi-rank codebook based on the discrete Fourier transform (DFT) matrix, by utilizing statistical properties of the channel generated by the spatial channel model (SCM). The proposed method includes a structural change of the precoding matrix indicator (PMI) by considering the phase difference distributions between adjacent antenna elements, as well as the selected codevector characteristics of each transmission layer. Performance gain of the proposed method is evaluated and verified by making the performance comparison to the 3GPP standard codebooks adopted by Long-Term Evolution (LTE) systems.

Development of GIS-based Method for Estimating and Representing Stream Slopes Along the River Network (GIS 기반 하천경사 산정 및 하천망에 따른 표출 방식 개발)

  • You, Ho-Jun;Kim, Dong-Su;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.725-738
    • /
    • 2012
  • Recently, a variety of GIS-based tools enabling to generate topographic parameters for hydrologic and hydraulic researches have been developed. However, most of GIS-based tools are usually insufficient to estimate and visualize river channel slopes especially along the river network, which can be possibly utilized for many hydraulic equations such as Manning's formula. Many existing GIS-based tools have simply averaged cell-based slopes for the other advanced level of hydrologic units as likely as the mean watershed slope, thus that the river channel slope from the simple approach resulted in the inaccurate channel slope particularly for the mountain region where the slope varies significantly along the downstream direction. The paper aims to provide several more advanced GIS-based methodologies to assess the river channel slopes along the given river network. The developed algorithms were integrated with a newly developed tool named RiverSlope, which adapted theoretical formulas of river hydraulics to calculate channel slopes. For the study area, Han stream in the Jeju island was selected, where the channel slopes have a tendency to rapidly change the upstream near the Halla mountain and sustain the mild slope adjacent to watershed outlet heading for the ocean. The paper compared the simple slope method from the Arc Hydro, with other more complicated methods. The results are discussed to decide better approaches based on the given conditions.

Design of a Channel Combiner for Digital Terrestrial Television Transmission (디지털 TV 방송 송신용 채널 컴바이너 설계)

  • 김승환;박종훈;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.542-550
    • /
    • 2001
  • In this paper, a channel combiner is designed to combine two adjacent digital TV channels without interference to transmit these channels with one broadband antenna. A constant impedance type combiner, consisting of two identical bandpass filters and two identical 3 dB power combiners, is chosen as a channel combiner. The bandpass filter used in the channel combiner also suppresses out-of-band signal caused by digital transmitter's non-linearity. H-plane type bandpass filters and branch-line fewer combiners are adopted in the design. The simulated results of the designed bandpass filter and power combiner show excellent agreement with the theoretical results. Finally, a channel combiner is designed by combining filters with rover combiners and the characteristics are simulated. It is shown that the designed channel combiner shows excellent performance.

  • PDF

A Study on the Optimal Number of Interfaces in Wireless Mesh Network (무선 메쉬 네트워크에서 인터페이스 수와 성능에 관한 연구)

  • Oh, Chi-Moon;Kim, Hwa-Jong;Lee, Goo-Yeon;Jeong, Choong-Kyo
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • In this paper, we obtain the optimal number of interfaces/channels in wireless mesh networks by simulation. The simulation study is done in static multi-channel multi-interface environment. When many nodes use a single interface and channel and contend for the channel, collisions of RTS/CTS results in network performance degradation. To avoid such degradation and reduce interferences between the adjacent nodes, use of multi-interface/channel is considered. 802.11a and 802.11b systems offer 12 and 3 orthogonal channels respectively and multi-interface/channel scheme could be applied. But rare research about the optimal number of interfaces/channels has been studied. Therefore, in this paper, simulation study for the optimal number of interfaces/channels in wireless mesh network is made.

Large eddy simulation on the turbulent mixing phenomena in 3×3 bare tight lattice rod bundle using spectral element method

  • Ju, Haoran;Wang, Mingjun;Wang, Yingjie;Zhao, Minfu;Tian, Wenxi;Liu, Tiancai;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1945-1954
    • /
    • 2020
  • Subchannel code is one of the effective simulation tools for thermal-hydraulic analysis in nuclear reactor core. In order to reduce the computational cost and improve the calculation efficiency, empirical correlation of turbulent mixing coefficient is employed to calculate the lateral mixing velocity between adjacent subchannels. However, correlations utilized currently are often fitted from data achieved in central channel of fuel assembly, which would simply neglect the wall effects. In this paper, the CFD approach based on spectral element method is employed to predict turbulent mixing phenomena through gaps in 3 × 3 bare tight lattice rod bundle and investigate the flow pulsation through gaps in different positions. Re = 5000,10000,20500 and P/D = 1.03 and 1.06 have been covered in the simulation cases. With a well verified mesh, lateral velocities at gap center between corner channel and wall channel (W-Co), wall channel and wall channel (W-W), wall channel and center channel (W-C) as well as center channel and center channel (C-C) are collected and compared with each other. The obvious turbulent mixing distributions are presented in the different channels of rod bundle. The peak frequency values at W-Co channel could have about 40%-50% reduction comparing with the C-C channel value and the turbulent mixing coefficient β could decrease around 25%. corrections for β should be performed in subchannel code at wall channel and corner channel for a reasonable prediction result. A preliminary analysis on fluctuation at channel gap has also performed. Eddy cascade should be considered carefully in detailed analysis for fluctuating in rod bundle.

A Joint Resource Allocation Scheme for Relay Enhanced Multi-cell Orthogonal Frequency Division Multiple Networks

  • Fu, Yaru;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.2
    • /
    • pp.288-307
    • /
    • 2013
  • This paper formulates resource allocation for decode-and-forward (DF) relay assisted multi-cell orthogonal frequency division multiple (OFDM) networks as an optimization problem taking into account of inter-cell interference and users fairness. To maximize the transmit rate of system we propose a joint interference coordination, subcarrier and power allocation algorithm. To reduce the complexity, this semi-distributed algorithm divides the primal optimization into three sub-optimization problems, which transforms the mixed binary nonlinear programming problem (BNLP) into standard convex optimization problems. The first layer optimization problem is used to get the optimal subcarrier distribution index. The second is to solve the problem that how to allocate power optimally in a certain subcarrier distribution order. Based on the concept of equivalent channel gain (ECG) we transform the max-min function into standard closed expression. Subsequently, with the aid of dual decomposition, water-filling theorem and iterative power allocation algorithm the optimal solution of the original problem can be got with acceptable complexity. The third sub-problem considers dynamic co-channel interference caused by adjacent cells and redistributes resources to achieve the goal of maximizing system throughput. Finally, simulation results are provided to corroborate the proposed algorithm.