• 제목/요약/키워드: adjacent buildings

검색결과 282건 처리시간 0.024초

Expected extreme value of pounding force between two adjacent buildings

  • Rahimi, Sepideh;Soltani, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제61권2호
    • /
    • pp.183-192
    • /
    • 2017
  • Seismic pounding between adjacent buildings with inadequate separation and different dynamic characteristics can cause severe damage to the colliding buildings. Efficient estimation of the maximum pounding force is required to control the extent of damage in adjacent structures or develop an appropriate mitigation method. In this paper, an analytical approach on the basis of statistical relations is presented for approximate computation of extreme value of pounding force between two adjacent structures with equal or unequal heights subjected to stationary and non-stationary excitations. The nonlinearity of adjacent structures is considered using Bouc-Wen model of hysteresis and the pounding effect is simulated by applying the nonlinear viscoelastic model. It is shown that the proposed approach can significantly save computational costs by obviating the need for performing dynamic analysis. To assess the reliability and accuracy of the proposed approach, the results are compared with those obtained from nonlinear dynamic analysis.

Inelastic seismic response of adjacent buildings linked by fluid dampers

  • Xu, Y.L.;Yang, Z.;Lu, X.L.
    • Structural Engineering and Mechanics
    • /
    • 제15권5호
    • /
    • pp.513-534
    • /
    • 2003
  • Using fluid dampers to connect adjacent buildings for enhancing their seismic resistant performance has been recently investigated but limited to linear elastic adjacent buildings only. This paper presents a study of inelastic seismic response of adjacent buildings linked by fluid dampers. A nonlinear finite element planar model using plastic beam element is first constructed to simulate two steel frames connected by fluid dampers. Computed linear elastic seismic responses of the two steel frames with and without fluid dampers under moderate seismic events are then compared with the experimental results obtained from shaking table tests. Finally, elastic-plastic seismic responses of the two steel frames with and without fluid dampers are extensively computed, and the fluid damper performance on controlling inelastic seismic response of the two steel frames is assessed. The effects of the fundamental frequency ratio and structural damping ratio of the two steel frames on the damper performance are also examined. The results show that not only in linear elastic stage but also in inelastic stage, the seismic resistant performance of the two steel frames of different fundamental frequencies can be significantly enhanced if they are properly linked by fluid dampers of appropriate parameters.

4면형 아트리움의 높이비와 천창 투과율에 따른 인접 실내공간의 자연채광성능 평가 (Evaluation of the daylight performance of adjacent interior spaces in four-sided atrium according to the height ratio of atrium, and the transmittance of atrium canopy)

  • 유하늬;이주윤;송규동
    • KIEAE Journal
    • /
    • 제10권5호
    • /
    • pp.57-62
    • /
    • 2010
  • Studies on daylighting of buildings have been continuously increased due to the recent escalating oil price and low-carbon strategies in developed countries. Daylighting of buildings not only saves electric energy, but provide the occupants with a comfort visual environment. Atrium spaces are adopted by many modern buildings to improve daylight performance of deep interior spaces. Among the various types of atria, the four-sided type atrium is frequently adopted by library buildings, governmental buildings and office buildings. This study aims to suggest daylighting design data for adjacent occupied spaces by conducting dynamic simulations using Daysim program. Daylight Factor(DF), Daylight Autonomy(DA) and Useful Daylight Illuminance(UDI) levels for 12 measurement points in adjacent occupied spaces were calculated for square-shape four-sided atria with different SAR(Section Aspect Ratio) and different canopy transmittance.

쌍둥이 인접구조물의 진동 제어를 위한 비대칭 지진격리 연결 제어시스템의 매개변수연구 (Parametric Study of Asymmetric Base-Isolation Coupling Control System for Vibration Control of Adjacent Twin Buildings)

  • 김다위;박원석;옥승용
    • 한국안전학회지
    • /
    • 제37권3호
    • /
    • pp.45-51
    • /
    • 2022
  • This paper focuses on a recently proposed asymmetric base-isolation coupling control system (ABiCS) for the vibration control of adjacent twin buildings. The ABiCS consists of inter-story diagonal dampers, a connecting damper between the two buildings, and a seismic isolation device at the base floor of one building. To investigate the control characteristics of ABiCS, a parametric study was performed by numerically simulating the 20-story twin buildings. In the parametric study, the control capacities of the inter-story diagonal dampers, connecting damper, and seismic isolation device were considered as varying parameters. The parametric study results indicate that the connecting damper between the two buildings reduces the responses of both buildings only at optimal or near-optimal capacity. In addition, adjusting the stiffness of the base isolation is found to be the most effective method for improving seismic performance and achieving cost-effectiveness. Accordingly, we presented a scenario-based performance improvement approach in which reducing the stiffness of the base isolation device could be an effective technique to improve the seismic performance of both buildings. However, note that checking the maximum allowable displacement of the base isolation device is essential.

Effect of lateral structural systems of adjacent buildings on pounding force

  • Kheyroddin, Ali;Kioumarsi, Mahdi;Kioumarsi, Benyamin;Faraei, Aria
    • Earthquakes and Structures
    • /
    • 제14권3호
    • /
    • pp.229-239
    • /
    • 2018
  • Under strong ground motion, pounding can be caused because of the different dynamic properties between two adjacent buildings. Using different structural systems in two adjacent structures makes a difference in the lateral stiffness and thus changes the pounding force between them. In this paper, the effect of the structural system of adjacent buildings on the amount of force applied by pounding effects has been investigated. Moment resisting frame systems (MRFs), lateral X-bracing system (LBS), shear wall system (SWS) and dual system (DS) have been investigated. Four different cases has been modelled using finite element (FE) method. The number of stories of the two adjacent buildings is different in each case: case 1 with 6 and 4 stories, case 2 with 9 and 6 stories, case 3 with 15 and 6 stories and case 4 with 10 and 10 stories. The structures have been modelled three-dimensionally. Non-linear time history analysis has been done on the structures using the finite element software SAP2000. In order to model pounding effects, the non-linear gap elements have been used.

Prediction methods on tunnel-excavation induced surface settlement around adjacent building

  • Ding, Zhi;Wei, Xin-jiang;Wei, Gang
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.185-195
    • /
    • 2017
  • With the rapid development of urban underground traffic, the study of soil deformation induced by subway tunnel construction and its settlement prediction are gradually of general concern in engineering circles. The law of soil displacement caused by shield tunnel construction of adjacent buildings is analyzed in this paper. The author holds that ground surface settlement based on the Gauss curve or Peck formula induced by tunnel excavation of adjacent buildings is not reasonable. Integrating existing research accomplishments, the paper proposed that surface settlement presents cork distribution curve characters, skewed distribution curve characteristics and normal distribution curve characteristics when the tunnel is respectively under buildings, within the scope of the disturbance and outside the scope of the disturbance. Calculation formulas and parameters on cork distribution curve and skewed distribution curve were put forward. The numerical simulation, experimental comparison and model test analysis show that it is reasonable for surface settlement to present cork distribution curve characters, skewed distribution curve characteristics and normal distribution curve characteristics within a certain range. The research findings can be used to make effective prediction of ground surface settlement caused by tunnel construction of adjacent buildings, and to provide theoretical guidance for the design and shield tunnelling.

Mitigation of seismic pounding between RC twin high-rise buildings with piled raft foundation considering SSI

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.625-635
    • /
    • 2022
  • High-rise buildings (HRBs) are considered one of the most common structures nowadays due to the population growth, especially in crowded towns. The lack of land in crowded cities has led to the convergence of the HRBs and the absence of any gaps between them, especially in lands with weak soil (e.g., liquefaction-prone soil), but then during earthquakes, these structures may be exposed to the risk of collision between them due to the large increase in the horizontal displacements, which may be destructive in some cases to the one or both of these adjacent buildings. To evaluate methods of reducing the risk of collision between adjacent twin HRBs, this research investigates three vibration control methods to reduce the risk of collision due to five different earthquakes for the case of two adjacent reinforced concrete (RC) twin high-rise buildings of 15 floors height without gap distance between them, founded on raft foundation supported on piles inside a liquefaction-prone soil. Contact pounding elements between the two buildings (distributed at all floor levels and at the raft foundation level) are used to make the impact strength between the two buildings realistic. The mitigation methods investigated are the base isolation, the tuned mass damper (TMD) method (using traditional TMDs), and the pounding tuned mass damper (PTMD) method (using PTMDs connected between the two buildings). The results show that the PTMD method between the two adjacent RC twin high-rise buildings is more efficient than the other two methods in mitigating the earthquake-induced pounding risk.

Earthquake induced structural pounding between adjacent buildings with unequal heights considering soil-structure interactions

  • Jingcai Zhang;Chunwei Zhang
    • Earthquakes and Structures
    • /
    • 제24권3호
    • /
    • pp.155-163
    • /
    • 2023
  • The purpose of this paper is to investigate the coupled effect of SSI and pounding on dynamic responses of unequal height adjacent buildings with insufficiently separation distance subjected to seismic loading. Numerical investigations were conducted to evaluate effect of the pounding coupling SSI on a Reinforced Concrete Frame Structure system constructed on different soil fields. Adjacent buildings with unequal height, including a 9-storey and a 3-storey reinforced concrete structure, were considered in numerical studies. Pounding force response, time-history and root-mean-square (RMS) of displacement and acceleration with different types of soil and separations were presented. The numerical results indicate that insufficient separation could lead to collisions and generate severe pounding force which could result in acceleration and displacement amplifications. SSI has significant influence of the seismic response of the structures, and higher pounding force were induced by floors with stiffer soil. SSI is reasonable neglected for a structure with a dense soil foundation, whereas SSI should be taken into consideration for dynamic analysis, especially for soft soil base.

Effect of the seismic excitation angle on the dynamic response of adjacent buildings during pounding

  • Polycarpou, Panayiotis C.;Papaloizou, Loizos;Komodromos, Petros;Charmpis, Dimos C.
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1127-1146
    • /
    • 2015
  • The excitation angle or angle of incidence is the angle in which the horizontal seismic components are applied with respect to the principal structural axes during a time history analysis. In this study, numerical simulations and parametric studies are performed for the investigation of the effect of the angle of seismic incidence on the response of adjacent buildings, which may experience structural pounding during strong earthquakes due to insufficient or no separation distance between them. A specially developed software application has been used that implements a simple and efficient methodology, according to which buildings are modelled in three dimensions and potential impacts are simulated using a novel impact model that takes into account the arbitrary location of impacts and the geometry at the point of impact. Two typical multi-storey buildings and a set of earthquake records have been used in the performed analyses. The results of the conducted parametric studies reveal that it is very important to consider the arbitrary direction of the ground motion with respect to the structural axes of the simulated buildings, especially during pounding, since, in many cases, the detrimental effects of pounding become more pronounced for an excitation angle different from the commonly examined 0 or 90 degrees.

도심지 깊은굴착시 주변 건물 및 매설관 손상평가 (Deep Excavation-induced Building and Utility Damage Assessment)

  • 유충식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.85-95
    • /
    • 2002
  • A substantial portion of the cost of deep excavations in urban environments is devoted to prevent ground movements and their effects on adjacent buildings and utilites. Prediction of ground movements and assessment of the risk of damage to adjacent structures has become an essential part of the planning, design, and construction of a deep excavation project in the urban environments. This paper presents damage assessment techniques for buildings and utilities adjacent deep excavation, which can be readily used in practice.

  • PDF