• Title/Summary/Keyword: adjacent buildings

Search Result 282, Processing Time 0.016 seconds

Changes in Construction and Characteristics during the Period of Foundation and Change of the Garden Pond Site in Guhwang-dong, Gyeongju (경주 구황동 원지(九黃洞 園池) 유적 창건 및 변화 시기의 조영과 성격 변화)

  • KIM, Hyungsuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.3
    • /
    • pp.102-118
    • /
    • 2022
  • Gyeongju, the capital of Silla, is the very essence of the culture and technology of the thousand-year-reign of Silla. However, few studies have been conducted on the landscape sites of the capital of Silla other than Donggung Palace and Wolji Pond, due to the lack of related data. Therefore, this study examined the construction characteristics and nature of the garden pond in Guhwang-dong, whose complete appearance was identified through excavation following Donggung Palace and Wolji Pond. Since the excavation of the garden pond in Guhwang-dong, Gyeongju, there have been disagreements in academia as to whether it is a palace pond or a temple pond of Bunhwangsa Temple. Considering the unique characteristic of the garden pond that it is divided into two periods, it was interpreted that it would have functioned as a ritual facility related to Ryong (oriental dragon) belief in the 6th to 7th centuries, the first period, and as a garden pond with enhanced landscaping functions in the 8th to 9th centuries, the second period. In addition, it is highly probable that it was the site of Cheongyeongung Palace (青淵宮) and Jochujeong Pavilion (造秋亭) mentioned in the literature records. The "ㄹ"- shaped waterway, a characteristic facility of the first period, was found; however, considering its width and depth, it is insufficient to conclude that it was a simple drainage facility. Rather, it is more likely that it functioned as a passageway for the conceptual entry of Ryong during Ryong rituals. Furthermore, some have suggested that it may have been a ceremony-related Yusang-goksu (流觴曲水) facility. These facilities related to Ryong rituals were reorganized in the second period. Specifically, the nature of the garden pond was changed centered on the landscaping function in connection with the addition of a curved revetment, garden stone, and pavilion buildings, and the dismantlement of the "ㄹ"-shaped waterway and hexagonal building. As for nature, it can be regarded as a royal facility in terms of decorative elements including the ritual function of the first period and the gwimyeonwa (ghost face tiles) of the second period. Judging from the fact that the upper part of the embankment adjacent to the west side of the site was removed, it is very apparent that the main building was located on the upper part of the embankment. There would not have been a large-scale building site because it served the functions of ritual and recreation, rather than being the residence of the king.

Development of 3D Impulse Calculation Technique for Falling Down of Trees (수목 도복의 3D 충격량 산출 기법 개발)

  • Kim, Chae-Won;Kim, Choong-Sik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study intended to develop a technique for quantitatively and 3-dimensionally predicting the potential failure zone and impulse that may occur when trees are fall down. The main outcomes of this study are as follows. First, this study established the potential failure zone and impulse calculation formula in order to quantitatively calculate the risks generated when trees are fallen down. When estimating the potential failure zone, the calculation was performed by magnifying the height of trees by 1.5 times, reflecting the likelihood of trees falling down and slipping. With regard to the slope of a tree, the range of 360° centered on the root collar was set in the case of trees that grow upright and the range of 180° from the inclined direction was set in the case of trees that grow inclined. The angular momentum was calculated by reflecting the rotational motion from the root collar when the trees fell down, and the impulse was calculated by converting it into the linear momentum. Second, the program to calculate a potential failure zone and impulse was developed using Rhino3D and Grasshopper. This study created the 3-dimensional models of the shapes for topography, buildings, and trees using the Rhino3D, thereby connecting them to Grasshopper to construct the spatial information. The algorithm was programmed using the calculation formula in the stage of risk calculation. This calculation considered the information on the trees' growth such as the height, inclination, and weight of trees and the surrounding environment including adjacent trees, damage targets, and analysis ranges. In the stage of risk inquiry, the calculation results were visualized into a three-dimensional model by summarizing them. For instance, the risk degrees were classified into various colors to efficiently determine the dangerous trees and dangerous areas.