• Title/Summary/Keyword: adjacent building

Search Result 348, Processing Time 0.03 seconds

Generalization of wind-induced interference effects for two buildings

  • Khanduri, Atul C.;Stathopoulos, Theodore;Bedard, Claude
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.255-266
    • /
    • 2000
  • Wind-induced interference effects on a building are the result of one or more adjacent buildings modifying the flow of wind around it, which may result in a significant increase or decrease in wind loads on the building. Wind loading standards and codes of practice offer little guidance to the designer for assessing the effects of interference. Experimental results on interference effects indicate that code recommendations may be significantly low (unsafe) or uneconomically conservative. The paper presents results of an extensive experimental program to study the wind flow mechanisms and to quantify the extent of wind load modifications on buildings due to interference effects. These results have been simplified and presented from the point-of-view of design and codification for the case of two buildings. Based on these results, general guidelines and limiting conditions defining wind interference are formulated and discussed.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

A Study on the Behaviour of Existing Subway Tunnel due to Demolition of Old Buildings and Construction of New Buildings (기존 건물 철거 및 신축 공사에 따른 지하철터널 거동특성 연구)

  • Chung, Jeeseung;Lee, Kyuyoung;Kim, Yongsoo;Lee, Sungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.23-28
    • /
    • 2014
  • Recent increasing of redevelopment project causes construction of new buildings after demolition of old buildings. However, the researches have been largely confirmed to analysis of behaviour characteristics of existing subway tunnel due to adjacent excavation which constructing new building so far. Accordingly, The ${\bigcirc}{\bigcirc}$ Building which will be built after demolishing existing parking lot is selected as a subject of study. And the purpose of this study is to analyze the effects on existing subway tunnel due to loading and unloading caused by demolition of upper buildings. The numerical analysis was performed by using the MIDAS/GTS program. Two cases for the numerical analysis were analyzed. The one is considering demolition of old buildings and the other is not considering it. This study is to analyze the effect on existing subway tunnel caused by demolition of upper building by analyzing numerical analysis results for tunnel displacement and lining stress. It was analyzed that the effects of considering the demolition of old buildings are larger than those of no considering it.

Measurement and Evaluation of the Acoustic Performance in the Royal Palace Buildings of Joseon Dynasty - Focused on Pyeonjeon and Chimjeon - (조선 궁궐 건축물의 음향성능 측정 및 평가 - 편전 및 침전을 중심으로 -)

  • Kim, Nam-Wook;Kim, Myung-Jun;Han, Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1269-1280
    • /
    • 2009
  • This study was performed to construct sound performance DB of royal palace buildings and to examine the special quality more scientifically. Research target of royal palace were Changdeokgung and Gyeongbokgung. Sound insulation performance between the adjacent room and facade, room acoustics of Pyeonjeon and Chimjeon which is representative building in royal palace were examined through field measurement. Measured values of RT($T_{mf}$) at Pyeonjeon were 0.78 sec. and 1.03 sec. in Seonjeongjoen and Sajeongjoen, respectively. The RTs of both Pyeonjeon buildings were estimated suitable for speech and lecture considering their volume. The RT($T_{mf}$)s at Chimjeon were measured in range of 0.29~0.55 sec. This meant that the acoustic energy in rooms was decreased by sound transmission through mulberry paper(Hanji) of traditional windows and doors. As a sound insulation performance, the single-number quantities($D_{ls,2m,nT,w}$) of the building facades in Pyeonjeon and Chimjeon were measured 4~20 dB. Also the single-number quantities($D_{p,w}$) between the adjacent rooms in Chimjeon were measured 3~18 dB. Sound insulation performance of traditional building elements such as window and door depended strongly on their layers and area.

A Case Study of Building Damage Risk Assessment Due to the Strutted Excavation: Design Aspects (지보굴착에 따르는 인접건물의 손상위험도 평가사례: 설계단계)

  • Lee Sun-Jae;Song Tae-Won;Lee Youn-Sang;Song Young-Han;Kim Jae-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.99-112
    • /
    • 2005
  • The ground excavation in the urban area induces in general ground movement and subsequent damage on the adjacent building structures. So the essentials in the designing stage are the prediction of ground movement induced by the ground excavation and the damage risk assessment of buildings adjacent to the excavation. A propsed prediction method of the ground movement induced by the strutted excavation has been studied with due consideration of the existing ground movement prediction methods. A building damage risk assessment method based on the angular distortion and the horizontal strain derived from the green-field ground movement is also proposed. These methods have been applied successfully in the on-going deep excavation project in Singapore.

Development of a Neural Network Expert System for Safety Analysis of Structures Adjacent to Tunnel Excavation Sites Focused on Development and Reliability Evaluation of Expert System (터널굴착 현장에 인접한 지상구조물의 안전성 평가용 전문가 시스템의 개발 (1) -전문가 시스템 개발 및 신뢰성 검증을 중심으로)

  • 배규진;신휴성
    • Geotechnical Engineering
    • /
    • v.14 no.2
    • /
    • pp.107-126
    • /
    • 1998
  • Ground settlements induced by tunnel excavation cause the foundations of the neighboring building structures to deform. An expert system called NESASS( Neural network Expert System for Adjacent Structure Safety analysis) was developed to analyze the structural safety of such building structures. NESASS predicts the trend of ground settlements resulting from tunnel excavation and carries out a safety analysis for building structures on the basis of the predicted ground settlements. Using neural network technique. the NESASS learns the database consisting of the measured ground settlements collected from numerous actual fields and infers a settlement trend at the field of interest. The NESASS calculates the magnitudes of angular distortion, deflection ratio, and differential settlement of the structure. and in turn, determines the safety of the structure. In addition, the NESASS predicts the patterns of cracks to be formed in the structure, using Dulacska model for crack evaluation. In this study, the ground settlements measured from Seoul subway construction sites were collected and classified with respect to the major factors influencing ground settlement. Subsequently, a database of ground settlement due to tunnel excavation was built. A parametric study was performed to select the optimal neural network model for the database. A comparison of the ground settlement predicted by the NESASS with the measured ones indicates that the NESASS leads to reasonable predictions. The results of confidence evaluation for safety evaluation system of the NESASS are presented in this paper.

  • PDF

Interference effects in a group of tall buildings closely arranged in an L- or T-shaped pattern

  • Zhao, J.G.;Lam, K.M.
    • Wind and Structures
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Interference effects in five square tall buildings arranged in an L- or T-shaped pattern are investigated in the wind tunnel. Mean and fluctuating shear forces, overturning moments and torsional moment are measured on each building with a force balance mounted at its base. Results are obtained at two values of clear separation between adjacent buildings, at half and a quarter building breadth. It is found that strong interference effect exists on all member buildings, resulting in significant modifications of wind loads as compared with the isolated single building case. Sheltering effect is observed on wind loads acting along the direction of an arm of the "L" or "T" on the inner buildings. However, increase in these wind loads from the isolated single building case is found on the most upwind edge building in the arm when wind blows at a slight oblique angle to the arm. The corner formed by two arms of buildings results in some wind catchment effect leading to increased wind pressure on windward building faces. Interesting interference phenomena such as negative drag force are reported. Interference effects on wind load fluctuations, load spectra and dynamic building responses are also studied and discussed.

Reorganization on the Subway Entrance System in Seoul for Better Pedestrian Environment (서울시 지하철 역사 출입구의 보행환경 개선방안)

  • Yi, Chang;Lee, Dong-Hoon;Lee, Joo-Ah
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.53-60
    • /
    • 2015
  • Purpose: Subway in Seoul, Korea is an important urban mass transportation system as it carries more than 4 million people a day. To support this important mission, subway entrances were designed and installed to maximize accessibility to the stations. However, a uniform plan by the national government guided quantity and layout of the subway entrances. Therefore, the plan did not consider unique characteristics of each station area and reorganization of the subway entrance system is required to improve pedestrian environment. Method: This study grouped the subway entrances into specific patterns to propose reorganizing schemes. The authors conducted field surveys, examined case studies and proposed an entrance reorganizing plan for each type. Result: The study recommends subway entrances be installed inside adjacent building when large commercial or office complexes are nearby. The authors proposed installing a bridge connecting the stations and adjacent buildings for elevated entrances. This would be only possible when there are commercial or office facilities nearby with enough floor space. The study summarizes the pros and cons of each solution. To translate our proposals into realities, various incentives should be given to building or land owners. This study made suggestions as to which kinds of incentives exist and be effective in a range of situations.

Pounding-involved response of isolated and non-isolated buildings under earthquake excitation

  • Mahmoud, Sayed;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.1 no.3
    • /
    • pp.231-252
    • /
    • 2010
  • Previous research on pounding between seismically isolated buildings during earthquakes has been focused on impacts at the bases of structures and the effect of simultaneous interactions at the bases and at the superstructures has not been studied in details. In this paper, the seismic responses of adjacent buildings supported on different or similar base systems considering impacts between bases and superstructures are numerically investigated. The study is carried out in three parts for the two types of adjacent buildings: (i) both structures have fixed bases; (ii) one structure has fixed base and the other is seismically isolated and (iii) both structures have base isolation systems. The results of the study indicate that the pounding-involved responses of the buildings depend mainly on the type of structural base systems and on the structural parameters of both buildings. For the base-isolated building, the variation of the peak accelerations and displacements of the storeys have been found to be relatively low. On the other hand, significant differences have been observed for the fixed base building. The results of the parametric study conducted for different values of the gap size between colliding structures show the reduction in the peak base displacements as the gap distance decreases.

Earthquake Response of Two Adjacent Buildings Founded at Different Depths (기초가 서로 다른 빌딩과 지반의 상호작용에 의한 지진응답 해석)

  • Lee Jong-Seh;Yoon Soon-Jong;Kim Dong-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.433-442
    • /
    • 2004
  • The aim of this paper is to study the interaction between adjacent buildings with different foundation levels under earthquake loading conditions. Buildings and soil are represented by two different models. In the first case, the building itself is modeled with standard frame element, whereas the soil behavior is stimulated by a special grid model. In the second case, the building and soil are represented by plane stress or plane strain elements. The modulus of elasticity of the 9round as well as the varying relations of inertia have a strong influence on the section forces within the buildings. The Interaction between the two buildings is demonstrated and discussed via numerical examples using the proposed method.