• Title/Summary/Keyword: adipogenic transcription factors

Search Result 92, Processing Time 0.016 seconds

Leaves of Cudrania tricuspidata on the Shoot Positional Sequence Show Different Inhibition of Adipogenesis Activity in 3T3-L1 Cells (꾸지뽕 신초 엽위별 잎 추출물의 항비만 효과)

  • Park, Ju Ha;Guo, Lu;Kang, He Mi;Son, Beung Gu;Kang, Jum Soon;Lee, Yong Jae;Park, Young Hoon;Je, Byoung Il;Choi, Young Whan
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.209-218
    • /
    • 2021
  • This study aimed to evaluate the anti-obesity effects of Cudrania tricuspidata leaf extract in the order of leaf development on the shoot (L0, L1, L2, L3, L4, and L5). The leaves at the apex of a Cudrania tricuspidata shoot were classified as L0; the next leaves of the apex were classified as L1, L2, L3, and L4 from highest to lowest; and the lowest leaf was classified as L5. A series of 70% ethyl alcohol leaf extracts were screened for the inhibitory effects of adipogenesis in 3T3-L1 preadipocytes. We found that the apical leaf extract of Cudrania tricuspidata (CTL0) was the most effective. Next, a study was conducted on the inhibitory action mechanism of CTL0. Treatment with CTL0 significantly suppressed the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by the decrease in lipid droplet content observed with Oil Red O staining. Treatment with 12.5 ㎍/ml, 25 ㎍/ml, and 50 ㎍/ml of CTL0 significantly reduced the lipid droplet content. Glucose and cellular triglyceride concentrations were reduced in the 3T3-L1 cells on the CTL0-treated medium compared to the differentiation medium (DM control, DMEM + insulin + dexamethasone + rosiglitazone). Compared with DM, CTL0 significantly inhibited the expression of key pro-adipogenic transcription factors, including peroxisome proliferator-activated receptor γ (PPARγ), LPL, A-FABP, and Glut4. These findings show that CTL0 extract has potent anti-obesity effects.

Novel Role of Dipterocarpus tuberculatus Roxb. as a Lipogenesis Inhibitor and Lipolysis Stimulator in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 lipogenesis 저해제와 lipolysis 촉진제로서 Dipterocarpus tuberculatus Roxb.의 새로운 역할)

  • Su Jin, Lee;Ji Eun, Kim;Yun Ju, Choi;You Jeong, Jin;Yu Jeong, Roh;AYun, Seol;Hee Jin, Song;Dae Youn, Hwang
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.855-864
    • /
    • 2022
  • The pharmacological efficacy of Dipterocarpus tuberculatus Roxb. has been verified in only several fields including photoaging, inflammation, hepatotoxicity, acute gastritis and osseointegration. To identify the novel functions of Dipterocarpus tuberculatus Roxb. on anti-obesity, inhibitory effect on lipid accumulation and stimulatory effect on lipolysis were investigated in MDI (3-isobutyl-1-methyl-xanthine, dexamethasone, and insulin) stimulated 3T3-L1 adipocytes treated with methanol extracts of Dipterocarpus tuberculatus Roxb. (MED). Lipogenic targets, including lipid accumulation, level of lipogenic transcription factors, and expression of lipogenic regulators, were downregulated in MDI-stimulated 3T3-L1 adipocytes treated with MED without any significant cytotoxicity. Also, MED treatment inhibited the mRNA levels of adipogenic targets including peroxisome proliferator-activated receptor (PPAR)γ and CCAAT-enhancer binding protein (C/EBP) α, as well as lipogeic targets including adipocyte fatty acid binding protein 2 (aP2) and fatty acid synthetase (FAS) in MDI-stimulated 3T3-L1 adipocytes. A similar decrease patterns were detected in Oil red O stained lipid droplets of MED treated MDI-stimulated 3T3-L1 adipocytes. Furthermore, several lipolytic targets, such as cAMP concentration, concentration of free glycerol, expression level of lipases, including ATGL, perilipin and HSL, were upregulated in MDI-stimulated 3T3-L1 adipocytes treated with MED. These results show that MED has a novel role as a lipogenesis inhibitor and lipolysis stimulator in MDI-stimulated 3T3-L1 adipocytes.