Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.11.855

Novel Role of Dipterocarpus tuberculatus Roxb. as a Lipogenesis Inhibitor and Lipolysis Stimulator in 3T3-L1 Adipocytes  

Su Jin, Lee (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Ji Eun, Kim (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Yun Ju, Choi (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
You Jeong, Jin (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Yu Jeong, Roh (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
AYun, Seol (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Hee Jin, Song (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Dae Youn, Hwang (Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University)
Publication Information
Journal of Life Science / v.32, no.11, 2022 , pp. 855-864 More about this Journal
Abstract
The pharmacological efficacy of Dipterocarpus tuberculatus Roxb. has been verified in only several fields including photoaging, inflammation, hepatotoxicity, acute gastritis and osseointegration. To identify the novel functions of Dipterocarpus tuberculatus Roxb. on anti-obesity, inhibitory effect on lipid accumulation and stimulatory effect on lipolysis were investigated in MDI (3-isobutyl-1-methyl-xanthine, dexamethasone, and insulin) stimulated 3T3-L1 adipocytes treated with methanol extracts of Dipterocarpus tuberculatus Roxb. (MED). Lipogenic targets, including lipid accumulation, level of lipogenic transcription factors, and expression of lipogenic regulators, were downregulated in MDI-stimulated 3T3-L1 adipocytes treated with MED without any significant cytotoxicity. Also, MED treatment inhibited the mRNA levels of adipogenic targets including peroxisome proliferator-activated receptor (PPAR)γ and CCAAT-enhancer binding protein (C/EBP) α, as well as lipogeic targets including adipocyte fatty acid binding protein 2 (aP2) and fatty acid synthetase (FAS) in MDI-stimulated 3T3-L1 adipocytes. A similar decrease patterns were detected in Oil red O stained lipid droplets of MED treated MDI-stimulated 3T3-L1 adipocytes. Furthermore, several lipolytic targets, such as cAMP concentration, concentration of free glycerol, expression level of lipases, including ATGL, perilipin and HSL, were upregulated in MDI-stimulated 3T3-L1 adipocytes treated with MED. These results show that MED has a novel role as a lipogenesis inhibitor and lipolysis stimulator in MDI-stimulated 3T3-L1 adipocytes.
Keywords
Dipterocarpus tuberculatus Roxb.; lipid accumulation; lipogenesis; lipolysis; obesity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aslam, M., Ahmad, M. S. and Mamat, A. 2015. A phytochemical, ehnomedicinal and pharmacological review of genus Dipterocarpus. Int. J. Pharm. Pharm. Sci. 7, 27-38.
2 Bendor, C. D., Bardugo, A., Pinhas-Hamiel, O., Afek, A. and Twig, G. 2020. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovasc. Diabetol. 19, 1-14.   DOI
3 Chang, W. T., Wu, C. H. and Hsu, C. L. 2015. Diallyl trisulphide inhibits adipogenesis in 3T3-L1 adipocytes through lipogenesis, fatty acid transport, and fatty acid oxidation pathways. J. Funct. Foods 16. 414-422.   DOI
4 De Abreu, H. A., Lago, I. A. S., Souza, G. P., Pilo-Veloso, D., Duarte, H. A. and Alcantara, A. F. C. 2008. Antioxidant activity of (+)-bergenin a phytoconstituent isolated from the bark of Sacoglottis uchi Huber (Humireaceae). Org. Biomol. Chem. 6, 2713-2718.   DOI
5 Dell'Agli, M. and Bosisio, E. 2002. Biflavones of Ginkgo biloba stimulate lipolysis in 3T3-L1 adipocytes. Planta Med. 68, 76-79.   DOI
6 Green, H. and Meuth, M. 1974. An established pre-adipose cell line and its differentiation in culture. Cell 3, 127-33.   DOI
7 Henness, S. and Perry, C. M. 2006. Orlistat. Drugs 66, 1625-1656.   DOI
8 Jeong, Y. S., Jung, H. K., Cho, K. H. Youn, K. S. and Hong, J. H. 2011. Anti-obesity effect of grape skin extract in 3T3-L1 adipocytes. Food Sci. Biotechnol. 20, 635-642.   DOI
9 Kim, C., Kim, J. H., Oh, E. Y., Nam, D., Lee, S. G., Lee, J., Kim, S. H., Shim, B. S. and Ahn, K. S. 2016. Blockage of STAT3 signaling pathway by morusin induces apoptosis and inhibits invasion in human pancreatic tumor cells. Pancreas 45, 409-419.   DOI
10 Kojta, I., Chacinska, M. and Blachnio-Zabielska, A. 2020. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 12, 1305.   DOI
11 Kwon, T. H., Wu, Y. X., Kim, J. S., Woo, J. H., Park, K. T., Kwon, O. J., Seo, H. J., Kim, T. and Park, N. H. 2015. 6,6'-Bieckol inhibits adipocyte differentiation through downregulation of adipogenesis and lipogenesis in 3T3-L1 cells. J. Sci. Food Agric. 95, 1830-1837.   DOI
12 Lass, A., Zimmermann, R., Oberer, M. and Zechner, R. 2011. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res. 50, 14-27.   DOI
13 Lee, E. J., Kang, M. and Kim, Y. S. 2012. Platycodin D inhibits lipogenesis through AMPKα-PPARγ2 in 3T3-L1 cells and modulates fat accumulation in obese mice. Planta Med. 78, 1536-1542.   DOI
14 Lee, S. J., Kim, J. E., Choi, Y. J., Gong, J. E., Jin, Y. J., Lee, D. W., Choi, Y. W. and Hwang, D. Y. 2021. Anti-Obesity effect of α-Cubebenol isolated from schisandra chinensis in 3T3-L1 adipocytes. Biomolecules 11, 1650.   DOI
15 Lee, S. J., Kim, J. E., Choi, Y. J., Gong, J. E., Park, S. H., Douangdeuane, B., Souliya, O., Park, J. M., Lee, H. S., Kim, B. H. and Hwang, D. Y. 2021. Therapeutic effects of Dipterocarpus tuberculatus with high antioxidative activity against UV-induced photoaging of NHDF cells and nude mice. Antioxidants 10, 791.   DOI
16 Lim, S. A., Yoon, Y. S., Cha, Y. J. and Park, H, S. 2000. Study on metabolic complications in obese patients. Kor. J. Fam. Med. 21, 1269-1276.
17 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) method. Methods 25, 402-408.   DOI
18 Manrique-Acevedo, C., Chinnakotla, B., Padilla, J., Martinez-Lemus, L. A. and Gozal, D. 2020. Obesity and cardiovascular disease in women. Int. J. Obes. 44, 1210-1226.   DOI
19 McArdle, M. A., Finucane, O. M., Connaughton, R. M., McMorrow, A. M. and Roche, H. M. 2013. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front. Endocrinol. 4, 52.   DOI
20 Nam, W., Nam, S. H., Kim, S. P., Carol, L. and Mendel, F. 2019. Anti-adipogenic and anti-obesity activities of purpurin in 3T3-L1 preadipocyte cells and in mice fed a high-fat diet. BMC Complement. Altern. Med. 19, 364.   DOI
21 Park, E., Lee, C. G., Kim, J., Yeo, S., Kim, J. A., Choi, C. W. and Jeong, S. Y. 2020. Antiobesity effects of gentiana lutea extract on 3T3-L1 preadipocytes and a high-fat diet-induced mouse model. Molecules 25, 2453.   DOI
22 Park, H. J., Cho, J. Y., Kim, M. K., Koh, P. O., Cho, K. W., Kim, C. H., Lee, K. S., Chung, B. Y., Kim, G. S. and Cho, J. H. 2012. Anti-obesity effect of Schisandra chinensis in 3T3-L1 cells and high fat diet-induced obese rats. Food Chem. 134, 227-234.   DOI
23 Pi-Sunyer, X. 2009. The medical risks of obesity. Postgrad. Med. 121, 21-33.   DOI
24 Ranaweera, S. Natraj, P., Rajan, P., Dayarathne, A., Mihindukulasooriya, S., Dinh, D. T. T., Jee, Y. and Han, C. H. 2021. Anti-obesity effect of sulforaphane in broccoli leaf extract on 3T3-L1 adipocytes and ob/ob mice. J. Nutr. Biochem. 100, 108885.
25 Rhee, E. 2022. A report of journal of obesity and metabolic syndrome in the last 3 years of upheaval. JOMES. 31, 4-8.   DOI
26 Rubin, C. S, Hirsch, A., Fung, C. and Rosen, O. M. 1978. Development of hormone receptors and hormonal responsiveness in vitro. Insulin receptors and insulin sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J. Biol. Chem. 253, 7570-7578   DOI
27 Russell, T. R. and Ho, R. 1976. Conversion of 3T3 fibro- blasts into adipose cells: triggering of differentiation by prostaglandin F2alpha and 1-methyl-3-isobutyl xanthine. Proc. Natl. Acad. Sci. USA. 73, 4516-4520.   DOI
28 Silverstone, T. 1992. Appetite suppressants. Drugs 43, 820-836.   DOI
29 Seo, E. K. and Kinghorn, A. D. 2000. Bioactive constituents of the family Differocarpaceae. Stud. Nat. Prod. Chem. 23, 531-561.   DOI
30 Shona, M. and McGee, S. L. 2015. 3T3-L1 adipocytes display phenotypic characteristics of multiple adipocyte lineages. Adipocyte 4, 295-302.   DOI
31 Sivaprakasam, S., Sikder, M. O. F., Ramalingam, L., Kaur, G., Dufour, J. M., Moustaid-Moussa, N., Wachtel, M. S. and Ganapathy, V. 2021. SLC6A14 deficiency is linked to obesity, fatty liver, and metabolic syndrome but only under conditions of a high-fat diet. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166087.   DOI
32 Thomson, A. B., De Pover, A., Keelan, M., Jarocka-Cyrta, E. and Clandinin, M. T. 1997. Inhibition of lipid absorption as an approach to the treatment of obesity. Methods Enzymol. 286, 3-44.   DOI
33 Watanabe, A., Kato, T., Ito, Y., Yoshida, I., Harada, T., Mishima, T., Fujita, K., Watai, M., Nakagawa, K. and Miyazawa, T. 2014. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 453, 787-792.   DOI
34 Wlodarczyk, M. and Nowicka, G. 2019. Obesity, DNA damage, and development of obesity-related diseases. Int. J. Mol. Sci. 20, 1146.   DOI
35 Yang, W. S., Lee, B. H., Kim, S. H., Kim, H. G., Yi, Y. S., Htwe, K. M., Kim, Y. D., Yoon, K. D., Hong, S., Lee, W. S. and Cho, J. Y. 2014. Dipterocarpus tuberculatus ethanol extract strongly suppresses in vitro macrophage-mediated inflammatory responses and in vivo acute gastritis. J. Ethnopharmacol. 19, 873-80.
36 Yin, M. C. and Chan, K. C. 2007. Nonenzymatic anti- oxidative and antiglycative effects of oleanolic acid and ursolic acid. J. Agric. Food Chem. 55, 7177-7181.   DOI
37 Zghonda, N., Yoshida, S., Ezaki, S., Otake, Y., Murakami, C., Mliki, A., Ghorbel, A. and Miyazaki, H. 2012. ε-Viniferin is more effective than its monomer resveratrol in improving the functions of vascular endothelial cells and the heart. Biosci. Biotechnol. Biochem. 76, 954-960.    DOI